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Aims of Course 
•  To introduce some of the basic concepts 

of digital signal processing 
– Where possible to avoid getting too 

mathematical! 
–  In many cases looking at concepts you have 

already studied from a slightly different 
perspective 

•  To complete some workshop exercises 
using MATLAB to gain an basic 
appreciation of what MATLAB offers 

•  Examine applications in a number of 
application areas 



Workshop Syllabus 
•  The DSP topics which we will cover 

include some basic topics: 
– Sampling waveforms 
– Time domain: 

•  Digital filters 
•  Energy estimation 
•  Periodicity estimation 

– Frequency domain analysis 
•  Fourier Analysis 
•  Wavelet Analysis 
•  Coherence and Synchrony 

– Applications 



Background Material 



Where to start ? 

•  Before we actually start looking at signal 
processing, we need to familiarise 
ourselves with some basic terminology 

•  As will be seen presently, sinusoidal 
waveforms are very important in signal 
processing so firstly a primer on these 
waveforms 



What is a Sine Wave ? 
•  A sine wave has three basic parameter that 

define its behaviour 
–  Amplitude (A) (the “height” of the oscillation) 
–  Frequency (f) 

•  The signal “repeats” itself exactly over and over. 
•  Its frequency is the “number” of complete oscillations/cycles 

completed in a single second. Measured in Hertz (s-1) 
•  Directly related to the Period (T) of the waveform which is the 

time it takes to complete one full oscillation 
–  Frequency=1/Period (f=1/T) 

•  An alternate measure termed angular frequency (ω) 
measured in radians per second is sometimes used (ω=2πf) 

•  But in some application areas, e.g. financial time series, 
talking about frequencies in units of Hz is nonsensical 

–  Consider time series of closing prices of a exchange index (1 “sample” 
per day!) 

–  Phase (φ) 
•  The relevance of this quantity is often misunderstood 



Sine Wave Parameters 
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Phase of a Sine Wave 
•  Phase is an angular measurement and hence can be 

quantified in units of either degrees or radians 
–  Remember 360° is the same as 2π radians and this represents 

one full cycle of the waveform! 
•  The term phase is often used quite loosely 
•  It can have two distinct meanings 

–  When you are referring to a single sine wave then you can refer 
to the instantaneous phase 

•  This reflects the current point that the sine wave is at in its cycle at a 
specific moment in time 

–  When you are referring to two sine waves (of the same 
frequency) then you can talk about a phase difference 

•  This can be measured by measuring the time difference between 
the points where each sine waves passes through the axis. This 
value is then represented as a phase angle by comparing it to the 
period (The period is viewed as being the equivalent of 360°) 



Instantaneous Phase 
•  When you draw a graph of a single sine wave, it typically has a value of 0 at 

the start of the graph (i.e. time=0) 
•  In such a case, the instantaneous phase at time=0 will be 0° (i.e. the “start” 

of a cycle) 
•  When the waveform hit its first positive peak value (i.e. one quarter way 

through the cycle), this is deemed to be the time where the instantaneous 
phase is 90°  

•  When the waveform returns to zero next (i.e. half way through the cycle), 
this is deemed to be when the instantaneous phase is 180° 

•  And so on until the moment when one complete cycle has been completed 
which is deemed to be the time where the instantaneous phase in 360° 

–  What happens after this point when the “next” cycle starts? 
•  One option: 

–  The measure of phase continues on past 360° (i.e. 450°, 540° etc.) which is 
termed unwrapped phase. However, such a measure is unbounded and hence 
difficult to represent graphical  

•  So instead we more commonly use wrapped phase  
–  Once 360° is reached we start again at 0° or once 180° is reached we start again 

at -180°  
•  The latter range is more commonly used 
•  Wrapped phase is more commonly used simply because it makes drawing graphs of 

phase more manageable) 



Graphs of Instantaneous Phase 
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Phase Difference 

•  Typically (though not exclusively) used to 
quantify the “timing difference” between two 
sine waves at the same frequency 
–  To complicate matters this measure is often applied to 

only a single sine wave where the “second” sine 
wave is assumed to be an implied “reference” sine 
wave 

•  Two sine waves are said to be “in phase” if their 
phase difference is 0° and completely “out of 
phase” if their phase difference is 180° 



Graphs of Phase Difference 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

Comparison of Two Sinusoids

Time Difference=0.25 sec 

Phase Difference=0.025/0.1*360 degrees=90 degrees 

Phase Difference of red wave relative to blue wave is +90 degrees 

Phase Difference of blue wave relative to red wave is -90 degrees 



Phase of a Single Sine Wave 
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So Why the Emphasis on Sine 
Waves ? 

•  A basic understanding of the terminology of sine waves 
is essential because mathematically all real world 
waveform can be viewed as being formed by adding 
together a carefully selected sequence of sine waves 
–  Each sine wave having a carefully selected amplitude and phase 

difference 
–  This approach is known as Fourier Analysis 

•  For real world signals, it offers an analysis methodology 
rather than a synthesis approach 
–  By viewing any signal as being a sum of sine waves, we can 

analyse or alter the signal by considering these individual sine 
wave components rather than the complex complete signal 

•  There is loads of mathematical theory and techniques for 
processing/analysing sine waves 



Illustration of Fourier Analysis 
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We will illustrate how a more complex waveform (square wave) can be 
formed by adding together specific sine waves 

With each component that is added the composite waveform is getting “nearer” 
to the desired square wave 



Comments 

•  The approach just outlined is a nice 
illustration of how a more “complex” signal 
can be formed by adding together a series 
of simple “basis” signals (sinusoids) 

•  But some points to note 
– The “complex” signal that we are try to form 

must be periodic  
•  very few real world signal exhibit anything 

approximating this behaviour 



Comments (2) 
– This approach only produces an 

approximation  
•  The more (higher frequency) basis signals we 

added the closer the approximation gets to the 
desired complex signal 

– The basis signals as all periodic with a 
frequency that is an integer multiple of the 
frequency of the desired complex signal 

•  Harmonics 

•  Consider notionally what happens to this 
approach if we consider “real world” 
signals that are not strictly periodic ? 



Sampling Signals 



Typical DSP Configuration 
“Real World” Signals 

 Pressure: 
• Speech 
• Music 
• SONAR 

Bio-Electric: 
• EEG 
• ECG 

 Electromagnetic: 
• Radio 
• RADAR 

Images: 
• Camera 
• MRI 

Other: 
• Seismic 

Sensor/ 
Transducer 

Electrical Waveform which 
ideally should be an analogue 
of the “real world” signal 

Not always an exact “copy” due 
to distortions introduced by sensor 

Anti 
Aliasing  

Filter 

Sampling 
Circuit 

Sequence 
of Digital 
Samples 

for 
Processing 

Financial\Economic “Signals” 



What is Sampling ? 
•  Sampling Circuits (also known as Analogue to Digital Converters [ADC]) 

–  Instantaneously measure the current value of the electrical voltage waveform 
(e.g. output from a physiological electrode or sensor, a micro-phone etc.) 

–  Represents this voltage by a number 
•  This number reflects the voltage level 

–  If the voltage is positive then the number should be “positive” 
–  If the voltage is negative then the number should be “negative” 
–  If the voltage is large then the number should be “large”… etc. 

•  This process is repeated over and over again at a fixed interval known as 
the sampling period (Ts) 

–  The number of times that this sampling process occurs every second is known as 
the sampling frequency (fs) 

•  One important point: 
–  The real electrical voltage waveform can have ANY voltage level in a continuum 

between its maximum and minimum value 
–  However, there will be a finite set of “numbers” (defined by the number of bits in 

the ADC) by which the voltage measures can be represented 
•  Thus this process may/will introduce an error (known as quantisation error) in the 

digitised representation of the analogue waveform but this is unavoidable! 
•  The quantisation error can be made smaller by using an ADC which has a larger 

number of bits but this has cost/storage(?) implications 



Example of Sampling 

Let’s look at sampling this sine wave with a frequency of 10 Hz 
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In this example the sampling frequency of 200 Hz is used (Ts=0.005 sec) 



How do you choose the Sampling 
Frequency? 

•  There is a criteria that must be satisfied when selecting a 
sampling frequency to use 
–  Nyquist Criteria or Shannon’s Theorem 

•  The sampling frequency (fs) must be AT LEAST TWICE 
(a factor of 2.5 is sometimes used as a rule of thumb!) 
the highest frequency present in the waveform being 
sampled 
–  Remember real world signals can be viewed as being 

formed by a sum of sine waves of different frequencies 
•  However … in some application spaces…. It is 

impossible to quantify as there is no “analogue” signal 
to measure or, arguably more correctly, it is not practical 
to measure the underlying signal 
–  e.g. Financial data 



Aliasing 
•  What happens if this criteria is NOT adhered to ? 
•  If there are frequency components present in the waveform being 

sampled which have a frequency greater than fs/2 (the Nyquist 
frequency) then a distortive effect known as aliasing will occur 

•  Aliasing results in a sine wave whose frequency is greater than the 
Nyquist frequency (say fs/2+a) appear as if it were a completely 
different frequency which is less than the Nyquist frequency (say fs/
2-a) 

•  Thus, once a signal is sampled it only makes sense to talk about 
frequencies in the range of 0Hz up to fs/2 Hz  

•  The function of the anti-aliasing filter/circuit is to ensure that this 
criteria is met  
–  It is an electronic circuit which “blocks” all frequencies above fs/2 
–  Well, approximately blocks them – in reality it attenuates them heavily 



Example of Aliasing 
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This time we consider sampling a 150 Hz sine wave with a sampling  
frequency of 200 Hz – Clearly the Nyquist criteria is NOT met! 
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The original 150 Hz sine wave now actually appears like a 50 Hz sine wave! 
Note: It “aliases” to 50 Hz = 150Hz-200Hz/2 



Some Notation 
•  “Real World” signals are termed continuous waveforms 

–  They have a value at all moments in time 
–  They are generally represented by notation in the form x(t) or y(t) 

•  The “t” indicates it exists at all times! 
•  The process of sampling results in the continuous waveform now only 

existing at the specific sampling points t=0, t=Ts, t=2Ts, t=3Ts….. t=nTs 
–  Therefore we now have a sequence of samples x(t=0), x(t=Ts), x(t=2Ts), x(t=3Ts)
…. x(t=nTs) 

–  This is more commonly noted as x[0],x[1],x[2],x[3] or x[n] in general 
•  n is known as the sample index 

•  Consider a continuous sine wave the equation of which is: 
–  x(t)=sin(2πft) 

•  The equivalent equation for the sampled sinusoid is got by replacing t with 
nTs 

–  x[n]=x(nTs)= sin(2πfnTs)= sin(n2πfTs)= sin(n2πf/fs)= sin(nθ) 
–  The term θ=2πf/fs is known as digital frequency 
–  Since f (analogue frequency) can only have values between 0 and fs/2, hence θ 

can only have a value between 0 and 2πfs/2/fs=π 



Digital Filters 



What is a filter ? 

•  In some applications, the terms “filter” and 
“model” are often synonymous 

•  Most introductory DSP courses have a far 
more restrictive definition of a filter 
– Operates on a sequence of input samples x[n] 

and generates a sequence of output samples 
y[n] by means of a static difference equation 

– These “basic” filters are 
•  Linear 
•  Causal 
•  Time invariant 



Why use a digital filter ? 
•  Can be used to model an existing data set but, 

initially, we will use them to process a sequence 
of data samples that have either been previously 
recorded and stored or perhaps process them in 
“real time” (i.e. as they are sampled) 

•  The aim of time domain filtering is typically to 
enhance certain frequencies that may be 
present in x[n] (the “signal”) and/or to attenuate 
other frequencies that may be present in x[n] 
(“noise”) 

•  Of course there are cases where it may not work 
that well! 



Difference Equation 
•  So how is y[n] produced from x[n]? 

–  Difference Equation 
•  A difference equation is an iterative equation which defines how the samples of y[n] 

are calculated 
•  Examples: 

–  y[n]=0.5x[n]+0.5x[n-1] 
•  Current output sample y[n] is got by adding 0.5 times the current input sample x[n] and 0.5 times the 

previous input sample x[n-1] 
–  y[n]=0.2x[n]+0.8y[n-1] 

•  Current output sample y[n] is got by adding 0.2 times the current input sample x[n] and 0.8 times the 
previous output sample y[n-1] 

•  We will restrict the types of filters that we will look at: 
–  Time invariant (the difference equation does NOT change over time) 
–  Linear (difference equation will NEVER have a term of the form x[n-1]y[n-3] or x[n]x[n-5] or 

anything like this!)  
•  Have you seen this before ? 

–  Moving Averages !!! 
•  Difference Equations clearly explain how to calculate y[n] from x[n] but you cannot tell 

what the filter does in terms of frequency content 



FIR and IIR Filters 
•  There are two classes of digital filters 
•  Finite Impulse Response (FIR) have difference equations 

which only contain terms with x[n] and previous x[n] 
samples 
–  y[n]=0.25x[n]+0.25x[n-1]+ 0.25x[n-2]+ 0.25x[n-3] 
–  Also called non-recursive filters 

•  Infinite Impulse Response (IIR) have difference 
equations which contain BOTH terms with x[n] and 
previous x[n] AND previous y[n] samples 
–  y[n]=0.2x[n]+0.8y[n-1] 
–  Also called recursive filters 

•  What’s the difference ? 
–  Different characteristics that make one type preferable to the 

other under certain scenarios 



Calculation of Difference 
Equation – Non-Recursive 
n x[n] -0.5x[n-1] 2x[n-3] y[n] 

0 0.5 0 0 0.5 
1 1.0 -0.25 0 0.75 
2 -0.2 -0.5 0 -0.7 
3 -0.8 0.1 1 0.3 
4 -1.2 0.4 2 1.2 

 

 

Difference equation: y[n]=x[n]-0.5x[n-1]+2x[n-3] 



Calculation of Difference 
Equation - Recursive 

n x[n] -2x[n-1] 0.5y[n-2] y[n] 

0 0.5 0 0 0.5 
1 1.0 -1.0 0 0 
2 -0.2 -2 0.25 -1.95 
3 -0.8 0.4 0 -0.4 
4 -1.2 1.6 -0.975 -0.575 

 

 

Difference equation: y[n]=x[n]-2x[n-1]+0.5y[n-2] 



Frequency Response 
•  So, knowledge of a difference equations allows you to write a program to 

implement the filter 
–  But how are these difference equations determined to start with ? 

•  A small number of basic filters are commonly known 
–  Moving average FIR filters! 

•  All other digital filters have to be designed 
•  There are a variety of techniques which can be used to generate a 

difference equation which implements a desired filter 
•  “Desired” is what sense ? 

–  The filter will implement a desired “frequency response” 
•  It will attenuate the desired frequency range(s) and/or enhance a different desired 

frequency range 
•  So the Frequency Response is another alternate way of describing the 

behaviour of a filter 
–  It is can be determined as an equation (and engineering student do indeed learn 

how to calculate such an equation from knowing the difference equation) 
–  More commonly (and more usefully) the frequency response is shown graphically 
 



Frequency Response 
•  The two graphs which constitute a frequency response 

are: 
–  Magnitude response 
–  Phase response 

•  If x[n]=sin(nθ) 
–  Input to the filter is a sampled sine wave 

•  Then y[n]=G(θ) sin(nθ+φ(θ)) 
–  Output of the filter is a sampled sine wave at the same frequency 

but whose amplitude has been scaled and which has undergone 
a phase change 

•  More correctly this is the “stable” output after a certain amount of time after 
the input was applied! 

•  The amplitude scaling factor is the magnitude response 
for that frequency whilst the phase change is the phase 
response for that frequency 

•  The magnitude response is often quantified in decibels 
–  20log(Magnitude Response) = decibels (dB) 



Frequency Response - FIR 
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Frequency Response - IIR 
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Filter’s Response to Sinusoidal 
Input 
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Filter’s Response to Sinusoidal 
Input 
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Importance of Frequency 
Response 

•  Clearly, the magnitude response of a filter is 
VERY important as it indicates how the filter 
“attenuates” or “enhances” particular 
frequencies 

•  In many applications, the phase response of 
a filter is not that important 
–  However, if the signal being filtered is composed 

of several different frequencies (as most “real 
world” signals are) then the phase response of a 
filter may be important 

–  Also filters introduce a “delay” which is directly 
associated with this phase response 



Phase Response 
•  The phase response indicates the phase shift 

which a sinusoid at a particular frequency 
suffers 

•  If the phase response of a filter is a straight 
line then it is said to have a linear phase 
response 
–  Linear phase responses mean that another 

quantity known as group delay is constant for all 
frequencies 

•  This may be important when a signal 
composed of many different frequencies is 
applied to the filter 



Linear Phase Filters 
•  If each of the frequencies present do NOT suffer 

the same group delay then the signal will be 
distorted in the time domain event if the filter does 
NOT alter their respective amplitudes 

•  Only certain FIR filters have a linear phase 
responses 

•  The are certain applications where this type of 
distortion is important and others where it is not! 



Distortion due to Non-Linear 
Phase Response 
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Designing Filters 

•  Usually it is a case that you will have some idea 
of the desired frequency response of the filter 
you need 
–  Low Pass Filter (LPF) 
–  High Pass Filter (HPF) 
–  Band Pass Filter (BPF) 
–  Band Stop Filter (BSF) 

•  Many “design tools” allow you to specify the 
desired frequency response characteristics and 
they generate the coefficients of a difference 
equation that delivers this frequency response 



Correlation as a Signal 
Processing Tool 

•  Correlation is an often used in a signal 
processing setting to investigate temporal 
relationships between two signals 

•  Consider an application like radar or sonar 
– Sonar emits an acoustic pulse (containing a 

number of cycles of a pure tone) 
– After travelling through the medium (e.g. 

water) the acoustic wave will bounce off an 
object and travel back to the sonar unit 

•  Getting smaller and corrupted by “noise” along the 
way 



Correlation 
•  We want to determine the distance of the 

target from the sonar device by reliably 
estimating the time difference between the 
“ping” and the “echo” back 
– More generally, we have two sampled signals 

(the “ping” and the “echo”) that we know\fell 
are “similar” except for a time “lag” 



The solution! 
 

•  Calculate the (cross-)correlation of the 
“ping” samples (y[n]) and the “echo” 
samples (x[n]) at a number of sample “lag” 
or delay values (τ)  

•  Search for the “lag” which has the largest 
(positive or negative) cross-correlation 
value 

 



Simple problem ? 

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

Time (ms)

Transmitted Sonar Ping (Sampling freq=10kHz)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

Time (ms)

Received Return Signal (Target at 30m)

0 100 200 300 400 500 600
-1

-0.5

0

0.5

1
Cross Correlation

Lag

0 5 10 15 20 25 30 35 40 45
-1

-0.5

0

0.5

1
Cross Correlation (labelled in units of distance)

Distance (m)
-600 -400 -200 0 200 400 600
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag

Sa
m

pl
e 

Cr
os

s 
Co

rre
la

tio
n

Sample Cross Correlation Function



Bit more challenging in the real 
world though! 
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Periodicity Estimation  
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• Periodicity estimation is a multi-domain 
problem  
• (Auto)-correlation and “related” 
algorithms offer elegant and 
computationally “simple” means of getting 
robust estimates 
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Use Autocorrelation 
 

•  Calculate the autocorrelation function for 
various lag values 

•  Maximum (positive!) value in 
autocorrelation should happen when the 
lag is equal to the period of the signal 

 



Example 

•  The largest peak in this case occurs at a 
time lag of 410 samples 

•  Thus the period is 410/44100= 9.3 ms or 
107 Hz 
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AMDF – Alternative to 
Autocorrelation 
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• Average Magnitude Difference Function (AMDF) may offer a “simpler” and 
more obvious means to autocorrelation for period estimation 
• Often will perform better in cases where “harmonics” of the “fundamental” 
frequency can cause problems for autocorrelation 
 



Some Caveats! 
•  Carefully avoided some of the more challenging aspects 

of developing a robust period estimator 
•  Many (perhaps most) signals, signal periodicity will be an 

intermittent property 
–  speech – only when “voiced” sounds are being produced 
–  accelerometer – only when user is actually walking/running/

cycling 

•  If fact ECG is probably the only application where the 
signal will be periodic most of the time 
–  At least you hope so if its your ECG! 

•  Application specific detection algorithms to identify time 
intervals containing periodic behaviour are required 
–  Along with custom heuristics for accepting valid/sane results 

from AC or AMDF 



Frequency Domain Analysis 



Frequency Domain Representation 

•  So far, we have introduced the concept of a 
frequency domain representation of a digital 
filter’s operation 
–  Frequency Response 

•  However, it would be very useful if we had a tool 
for estimating the frequency content (i.e. both 
magnitude and phase) of any sequence of 
samples 

•  The Discrete Fourier Transform (DFT) is such a 
mathematically tool 



Discrete Fourier Transform 
•  The DFT is an equation which allows use to analyse a 

block or frame of samples in order to estimate the 
component present at ANY particular digital frequency 
(θ) 
–  Mathematically speaking, the output of this equation is a 

complex number which can be represented by a magnitude 
and a phase value 

–  The magnitude is the “amplitude” of the component at that 
frequency  

–  The phase is the “phase angle” of the component at that 
frequency 

–  As noted previously, only digital frequency values between 0 and 
π have meaning (equivalent to 0 Hz to fs/2 Hz) 

•  However, typically you will be interested in knowing such 
information for more that just one frequency 



Fast Fourier Transform 
•  Typically, you will want to quantify the frequency 

components is a signal for a whole set of discrete 
frequencies in the range of possible digital frequencies  

•  This would require you to use the basic DFT equation 
repeatedly for EACH frequency 
–  Computationally very demanding! 

•  The Fast Fourier Transform (FFT) addresses this issue 
by carrying out the DFT calculation for a certain specific 
set of frequencies in a computationally efficient manner 
–  FFT is NOT a different type of analysis to DFT – just an efficient 

way of calculating the DFT for a specific set of frequencies 



Properties of FFT 
•  The FFT uses as its input a block or frame of N 

consecutive samples 
–  For an FFT there is a restriction that N=2k where k is 

some integer value! 
•  Why ? This is a “restriction” results in the mathematical 

equations that calculate the FFT being much “faster” to 
complete 

•  N is termed the FFT “order” (e.g. “512 point” (29) FFT) 
–  However, if you can use frame sizes which do not 

meet this criteria but before the FFT is calculated the 
frame is padded with extra zero samples to meet this 
criteria 

•  This does NOT effect the result in ANY way! 



Properties of FFT 
•  The output of the FFT will be exact same result 

that you would have got if you calculated the 
DFT for these specific set of N digital 
frequencies 
–  In other words, it tells you information on the 

components present at these N frequencies 
–  Just much more “quickly”! 
•  N points in time à N frequency points after 

the FFT 



FFT Frequency Resolution 
•  What are these N specific frequencies ? 
•  For mathematical reasons, this set of digital 

frequencies cover the range of θ=0 (0 Hz) to 
θ=2π (fs Hz) 

•  The set of N frequencies start at θ=0 (i.e. 0 Hz) 
and are spaced 2π/N (fs/N) apart 
–  Therefore there will only be N/2 of these points 

covering frequencies within the standard digital 
frequency range of θ=0 (0 Hz) to θ=π (fs/2 Hz) 

•  Starting at 0 Hz with the last one at fs/2-fs/N Hz 

•  Allow you to view the “spectrum” of the 
signal 



Example of FFT 
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Example of FFT 
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What if I want more resolution ? 
•  If you want more “points” in the output of 

the FFT (i.e. you want to see what is going 
on at finer spaced frequencies) 
–  Increase the FFT order (N) 
– Does not mean that you need more time 

domain points to do this !!! 
– Be clear in your mind of the difference 

between the FFT order (and how it can be 
increased by padding) and the “frame size” of 
signal samples you are analysing 

•  You can take a frame of 300 samples of a signal and pad 
them to 512 points in order to complete a 512 point FFT! 



Some Caveats about FFT! 
•  Often your signal samples will span quite an extended 

period of time so you may want to break up this time 
period into a number of smaller individual frames and 
complete and FFT on each the smaller frames 
–  Rather than just doing one FFT for a complete EEG duration 

•  There is a complete loss of time resolution capabilities in 
the FFT output 
–  You can tell if a frequency component was present in the frame 

but not when it was present in the frame! 
•  Mathematically speaking the frequency content/spectrum 

should be stationary for the duration of the frame 
–  In other words, the frequency content should not be changing 

during the frame duration 
–  Not always the case! 



Spectrogram 

•  A spectrogram is used to show how the 
FFT magnitude evolves over time 
– Or more specifically for each frame of N 

samples (in which case the FFT is often 
referred to as calculating the “Short Term 
Fourier Transform (STFT) of each block) 

•  Remember each block of N samples 
provides N/2 frequency points (of interest) 

•  Spectrogram displays these over time with 
the colour of the plot being used to 
indicate the “size” of each component 

 



Spectrogram Example 
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Impact of Frame Size 

•  The issue of time resolution can be 
addressed by making the frame size (N) 
smaller 
– This however has a negative impact on the 

ability to resolve information in the frequency 
domain – more later! 

•  The issue of the signal being stationary 
during the N samples can also have a 
impact of what can be deduced from the 
FFT output 



Example Impact of Frame Size 

•  Consider a signal made up of TWO sine waves 
(sampled at 500 Hz) 
–  First wave is at 50 Hz and starts at time t=0 
–  Second wave is at 60 Hz is present only for a burst 

starting at t=0.25 sec and ending at 0.75 sec 
•  Consider spectrogram for different frame sizes 

–  Watch out for: 
•  Time Resolution 
•  Frequency Resolution 



Spectrogram N=32 
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Spectrogram N=64 
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Spectrogram N=128 
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Spectrogram N=256 
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Windows 
•  There is a trade-off between achieving time and frequency 

resolution with the FFT 
•  The more accurate the time resolution the less accurate the 

frequency resolution 
•  Mathematically, this is due to the actual process of breaking the 

overall set of samples in frames of N samples 
•  This process is termed windowing 
•  In the simple case, a window of N samples moves along the overall 

signal in “jumps” of N samples for each time the FFT is calculated 
•  The window itself has a “non-perfect” frequency content and this 

distorts (“smears”) the frequency content of the signal being 
analysed 
–  The longer the window (larger N) the less frequency distortion occurs 
–  The shorter the window (smaller N) the more frequency distortion 

occurs 



Other Windows 
•  The example of windowing previously shown uses what 

is known as a rectangular window of size N 
–  The frame can be viewed as the multiplication of the original 

complete set of signal samples multiplied by an equal length 
window signal 

–  This window signal has samples which are all 0 except for N 
samples centred around the current frame of interest 

•  There are other windows more commonly used that offer 
less “distortion” 
–  Hamming Window 
–  Hanning Window 
–  Kaiser Window 
–  Etc. 



Impact of Window Type on 
frequency resolution 
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Ability to Identify Frequency 
Components 
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Power Spectral Density 
•  The Power Spectral Density (PSD) is 

closely associated with the FFT 
•  Theoretically it can be related to either a 

stochastic signal’s autocorrelation function 
or its Fourier Transform\Frequency 
Spectrum 

•  It offers a more statistically valid means of 
representing where signal power is 
distributed in the frequency spectrum 
– Typically at the expense of frequency 

resolution 



PSD Calculation 
•  Common methods for calculating PSD use 

the following steps: 
– Subdivide the frame of N signal samples into 

P frames with M samples in them (M<N) and 
(P>=N/M) 

– For each of these P frames of M samples 
•  Calculate the FFT of the frame of M samples 
•  Square the magnitude of the resulting frequency 

points in the FFT (and “weight” them) 
– Average (perhaps with some weighting factor 

or using overlapping frames) corresponding 
frequency points in the P frames 



Comments on PSD 

•  Does the PSD tell you anything new that 
you would not “know” from looking at the 
FFT? 
– Probably not! 

•  Does the PSD offer a “more valid” 
measure of the frequency make-up of a 
signal ? 
– Yes and certainly to journal paper reviewers!  



Interpolation and Decimation 

•  Sometimes you may feel that you have 
“too” many or “too” few sample points after 
you have sampled your signal 

•  In these cases you may want to decimate 
or interpolate the samples 
– Reduce the number of samples/sampling 

frequency by a factor of N 
–  Increase the number of samples/sampling 

frequency by a factor of N 



Decimation 
•  Intuitively this may seem trivial 

– e.g. If you need to drop33 half the samples 
then just select every second sample 

•  Partially correct but there may be an issue 
with “aliasing” 
–  In dropping every 2nd sample in this example 

we have effectively reduced the sampling 
frequency by 2 

– Aliasing will occur if there were (significant) 
frequency components in the original signal 
above half the NEW sampling frequency  



Undesired Aliasing Effect 

•  Two (sine wave) components at 2 kHz and 5 kHz in the original signal 
sampled at 16 kHz 

•  When we decimate by a factor or 2, we can only have a signal with 
components up to 4 kHz (i.e. half the NEW sampling frequency) 

•  However, it now looks like we have a 2nd “phantom” component at 3 kHz as 
well as the “valid” component at 2 kHz 

•  We should have filtered (LPF) the original signal before decimation! 
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More Advanced Topics 
 



Interpolation 

•  There may be cases where we need to 
increase the number of samples\sampling 
frequency (Say by 2) 

•  Again an intuitive solution would be to 
insert “zero values” between each current 
sample and “smooth” the resulting signal 

•  But “smooth” really means that we apply a 
digital filter 
– So what filter is suitable and what happens if 

we don’t use one? 



Interpolation Steps 

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500

4000

Co
m

po
ne

nt
 M

ag
ni

tu
de

Frequency (Hz)

Frequency Spectrum of original signal

0 1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

2500

3000

3500

4000

Co
m

po
ne

nt
 M

ag
ni

tu
de

Frequency (Hz)

Frequency Spectrum after zero insertion

0 1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

2500

3000

3500

Co
m

po
ne

nt
 M

ag
ni

tu
de

Frequency (Hz)

Frequency Spectrum after smoothing zeros (Poor choice of LPF)

A poor LPF smoothing filter was 
deliberately apply to illustrate 
how an interpolation “artefact” 
can remain in the frequency 
spectrum after smoothing 



Time-Frequency Resolution 
Trade-off 

•  So with the FFT you can localise in time 
(Δt) OR localise in frequency (Δf) but not 
both at the same time 
     Δt Δf = constant 

– Short time windows offer better time 
resolution 

– Long time windows offer better frequency 
resolution 

– But whichever we choose – it’s applicable to 
all frequencies which often is not desirable! 



Wavelet Transform 

•  In some applications however, it may be 
desirable to trade-off time and frequency 
resolution to different degrees at 
difference frequencies 

•  A quite common requirement would be to 
want  
– Better time resolution at “higher” frequencies 

at the expense of frequency resolution 
– Better frequency resolution at “lower” 

frequencies at the expense of time resolution 



Limitation of Fourier Transform 

•  The limitation of the (Short Term) Fourier 
Transform relates back to its mathematical 
foundations 
– Sampled signal could (in theory) be formed by 

summation of an infinite number of equal 
length sine waves each with a different 
amplitude scaling factor (magnitude of the 
STFT) and each with a different phase shift 
(phase of the STFT) 

– All these “basis functions” have the same 
length and hence time resolution! 



Wavelet Transform (WT) 

•  Wavelet analysis has a similar foundation 
except that the length\duration of the 
“basis” functions can be different at 
difference frequencies (called “scales in 
WT parlance) 
– Short “duration” basis functions used at 

“higher” frequencies 
– Longer “duration basis functions used at 

“lower” frequencies 



Comparing STFT and WT for 
Time-Frequency Analysis 

•  Highlights how wavelet analysis can 
achieve a trade-off in time-frequency 
resolution compared with traditional STFT 
analysis 



When to use WT and what 
needs to be done ? 

•  Wavelet analysis may prove a useful tool if you feel 
that STFT is failing to “accurately” capture localised 
characteristic either in frequency (low frequency 
spectral separation) or time (high frequency 
temporal resolution) 

•  A huge array of difference wavelet “families” have 
been used and it is often a question of “trial and 
error” to determine which is best suited to an 
application 

•  But before you start with WT – you need to ask 
yourself whether there is evidence in STFT analysis 
to make you think that WT will uncover something 
new in your signal 



AR(MA) Prediction Models 
•  AR(MA) models have already been examined in detail as 

linear predictors in the time domain 
•  These techniques also provide a complimentary analysis 

techniques to STFT 
•  The sampled signal is segmented into frames of N 

samples (during which the signal is assumed to be 
stationary) 

•  AR(MA) models produce a set of coefficients for a (filter) 
difference equation 
–  AR models result in a difference equation in x[n] and y[n-k] terms 
–  ARMA models result in addition terms in the difference equation 

contains terms in x[n-l] 
•  Like all filters\difference equation, we can examine the 

frequency response of the model 



Frequency Response of an AR 
Model of an EEG signal 
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AR(MA) Model Frequency 
Response 

•  The frequency magnitude response of an AR(MA) model 
is effectively a smoothed approximation of the STFT 
magnitude response 

•  As such, it highlights the main “resonant” frequencies of 
the signal rather than the finer detail of the STFT 
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AR(p=12) EEG Model 
Spectrogram 
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ARMA EEG Model Performance 
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SP applications of AR(MA) 
models 

•  Like STFT and WT, it offers a valid frequency 
domain representation of the signal  

•  Because of the smoother “surface”, it often offers 
a means of more easily tracking the temporal 
trajectory of key resonant frequencies or 
components 

•  For some applications, the resonant frequencies 
identified by AR(MA) models can be associated 
with physical parameters of the system that 
produced the signal 



Synchrony 

•  Correlation offers a time domain “similarity” 
measure 

•  Synchrony measures attempt to quantify the 
level of synchronisation between certain 
frequencies (or frequency bands) in two 
difference signals 

•  Large number of different measures of linear 
and non-linear “synchrony” 
–  http://www.dauwels.com/Papers/NeuroImage2009.pdf 

provides an excellent overview of many different 
measures 

–  Commonly used in EEG signal analysis 



Cross Coherence 
•  Cross coherence is one of the simpler 

measures of synchrony and can be easily 
calculated from the STFT of the two 
signals being analysed 

 

•  Fa(t,f) is the STFT of signal “a” at time t and 
frequency f 

•   Fb(t,f) is the complex conjugate of the 
STFT of signal “b” at time t and frequency f 

 



Cross Coherence (2) 

•  Resultant complex value has a magnitude value 
between 1 (meaning the two signals are 
perfectly synchronised at that frequency 
component) and 0 (meaning there is a complete 
absence of synchronisation at that frequency 
component) 

•  The phase angle of the cross coherence can be 
easily converted into a corresponding time 
advance/delay between the two signals at that 
frequency 



Sample EEG Cross Coherence 
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Event-Related Coherence

See Matlab add on toolbox EEGlab:  http://sccn.ucsd.edu/eeglab/ 



Independent Component 
Analysis (ICA) 

•  ICA techniques are used in scenarios 
where it is possible to measure N different 
signals which are formed by a linear 
combination of M underlying (but not 
measurable) signals of interest 

 

We can measure xi[n] but we actually want to know sj[n] and/or aij 



ICA (2) 

•  If certain conditions are valid concerning 
the statistical independence of the source 
signals\”factors”, then ICA can be used to 
estimate them 

•  Large variety of different ICA algorithms 
depending on particular requirements 
(under-, over-stated, real time, single 
channel,…) 

•  http://cnl.salk.edu/~tewon/Blind/
blind_audio.html  



Applications of ICA 

•  Most common application of ICA are in: 
– Wireless communication 
– EEG analysis 
– Separation of biosignals 

•  Maternal and foetal ECG separation 
–  Investigation of hidden factors in financial data 

signals 
–  Image Noise reduction 



ICA Resources 

•  http://www.ee.columbia.edu/~dpwe/e6820/
papers/HyvO00-icatut.pdf (Tutorial paper) 

•  http://www.bsp.brain.riken.jp/ICALAB/ 
(Matlab ICA toolbox) 



Thank You! 


