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Signals

In the fields of communications, signal processing, and in electrical engineering
more generally, a signal is any time-varying or spatial-varying quantity

This variable(quantity) changes in time

e Speech or audio signal: A sound amplitude that varies in time

e Temperature readings at different hours of a day

» Stock price changes over days

* Etc.

Signals can be classified by continues-time signal and discrete-time signal:

 Adiscrete signal or discrete-time signal is a time series, perhaps a signal that
has been sampled from a continuous-time signal

e Adigital signal is a discrete-time signal that takes on only a discrete set of
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Periodic Signal

periodic signal and non-periodic signal:
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* Period T: The minimum interval on which = i T

a signal repeats e W

e Fundamental frequency: f,=1/T . M

* Harmonic frequencies: kf, W
* Any periodic signal can be approximated

by a sum of many sinusoids at harmonic frequencies of the signal(kf,) with
appropriate amplitude and phase

* Instead of using sinusoid signals, mathematically, we can use the complex
exponential functions with both positive and negative harmonic frequencies

Euler formula: exp( jot) = sin( ot) + jcos( wt)



Time-Frequency Analysis

 Asignal has one or more frequencies in it, and can be viewed from
two different standpoints: Time domain and Frequency domain

Time Domian (Banded Wren Song) « Frequency Domain
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Time-domain figure: how a signal changes over time
Frequency-domain figure: how much of the signal lies within each given
frequency band over a range of frequencies

Why frequency domain analysis?

 To decompose a complex signal into simpler parts to facilitate analysis
e Differential and difference equations and convolution operations in the
time domain become algebraic operations in the frequency domain

e Fast Algorithm (FFT)



Fourier Transform

We can go between the time domain and the frequency domain
by using a tool called Fourier transform

A Fourier transform converts a signal in the time domain to the
frequency domain(spectrum)

 An inverse Fourier transform converts the frequency domain
components back into the original time domain signal

Continuous-Time Fourier Transform:

F(jo)= ] f(t)e it f(t):ziTF(jw)eiwtdw
— 0 T _»
Discrete-Time Fourier Transform(DTFT):
X(eja)): Elox[n]e—ja)n X[n]=%jX(ej”)e"””dw
n=—-o 2



Fourier Representation For Four Types of Signals

The signal with different time-domain characteristics has different
frequency-domain characteristics

3
4

Continues-time periodic signal ---> discrete non-periodic
spectrum

Continues-time non-periodic signal ---> continues non-periodic
spectrum

Discrete non-periodic signal ---> continues periodic spectrum
Discrete periodic signal ---> discrete periodic spectrum

The last transformation between time-domain and frequency is most
useful

The reason that discrete is associated with both time-domain and frequency
domain is because computers can only take finite discrete time signals



Periodic Sequence

A periodic sequence with period N is defined as:
x(n)=Xx(n+kN) ,where kis integer

_jz_ﬂkn
N

For example: w/ = (it is called Twiddle Factor)

Properties:  Periodic =~ w " =w kKrNIn —yy kineN)

Symmetric Wk Wy o (NS k(N =)

Nz—lw kn N n=rN
Orthogonal Z W =0 other

For a periodic sequence ¢ n) with period N, only N samples
are independent. So that N sample in one period is enough to
represent the whole sequence



Discrete Fourier Series(DFS)

Periodic signals may be expanded into a series of sine and

cosine functions N1
~ _ ~ kn ~

X (k)= X x(nWy X (k) = DFS (X (n))

X(n) = IDFS (X (k))

X (k) is still a periodic sequence with period N in frequency

domain
The Fourier series for the discrete-time periodic wave shown below:
Sequence x (in time domain) Fourier Coeffients
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Finite Length Sequence

Real lift signal is generally a

0<n<N-1
finite length sequence x(n) = {X(”) =n=

0 others

If we periodic extend it by the period N, then X (n) = § X(N+rN)
=—0o0
x(n) |,
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Relationship Between Finite Length Sequence
and Periodic Sequence

A periodic sequence is the periodic extension of a finite length

sequence )
Xx(n) = X x(n+rN)=x(n))y

m=—o0o

A finite length sequence is the principal value interval of the periodic

sequence 1 0<n<N -1

x(n) = X(MRy () Where Ry (n) = {o others

So that:
x(n) = X(n)Ry (n) = IDFS[X (k)IRy ()

X (k) = X (k)Ry (k) = DFS[X(n)IRy ()



Discrete Fourier Transform(DFT)

e Using the Fourier series representation we have Discrete
Fourier Transform(DFT) for finite length signal

e DFT can convert time-domain discrete signal into frequency-
domain discrete spectrum

Assume that we have a signal {x[n]}._¢. Then the DFT of the
signal is a sequence x [k] for k =0,---,N -1

X [k] _ Nilx[n]e—ZHjnk I'N
n=0
The Inverse Discrete Fourier Transform(IDFT):

x[n] = —z X[k]ez”J”k’N n=0,2,-,N-1.

Note that because MATLAB cannot use a zero or negative
indices, the index starts from 1 in MATLAB



DFT Example

The DFT is widely used in the fields of spectral analysis,
acoustics, medical imaging, and telecommunications.

Time domain signal

For example: i
4 o

x[N]=[24-16], N=4,(n=0123) &5

g 2

3 — i nk 3 - 1T

X [k] = ;Ox[n]e 2 = ZOX[H](—J) 0

n
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Fast Fourier Transform(FFT)

 The Fast Fourier Transform does not refer to a new or different
type of Fourier transform. It refers to a very efficient algorithm for
computing the DFT

e The time taken to evaluate a DFT on a computer depends
principally on the number of multiplications involved. DFT needs
N? multiplications. FFT only needs Nlog,(N)

e The central insight which leads to this algorithm is the
realization that a discrete Fourier transform of a sequence of N
points can be written in terms of two discrete Fourier transforms
of length N/2

e Thus if N is a power of two, it is possible to recursively apply
this decomposition until we are left with discrete Fourier
transforms of single points



Fast Fourier Transform(cont.)

N -1 . N -1
Re-writing X [k]= ¥ x[n]e ?™™ /N a5 X[k]= ¥ x[n]w X

It is easy to realize that the same values of W\ are calculated many times as the

computation proceeds
Using the symmetric property of the twiddle factor, we can save lots of computations

N -1 nk N -1 kn N -1 kn
X[kl= 3 x[nW K = = x(MW " + 3 x(nW
n=0 n=0 n=0
even n odd n

N /2-1 N /2-1
= Y x@2nW 2K 4+ Y x(2r + 1w K2
r=0 r=0
N /2-1 N /2-1
= ZO Xl(r)WI\II(r/Z +W ZO Xz(r)WI\lfr/z
r= r=

= X1 (k) + W X, (k)

Thus the N-point DFT can be obtained from two N/2-point transforms, one on even
input data, and one on odd input data.



Introduction for MATLAB

MATLAB is a numerical computing environment developed by
MathWorks. MATLAB allows matrix manipulations, plotting of
functions and data, and implementation of algorithms

Getting help
You can get help by typing the commands help or lookfor at
the >> prompt, e.g.
>> help Fft

Arithmetic operators

Symbol Operation Example

+ Addition 3.1+9

Subtraction 6.2-5
Multiplication 2 * 3

Division 5/2

Power 372

> SN ¥ !
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Data Representations in MATLAB

“u_n

Variables: Variables are defined as the assignment operator . The syntax of

variable assignment is
variable name = a value (or an expression)

For example,
>> X =5
X =

5
>> y = [3*7, pi/3]; % pt IS 1« in MATLAB

Vectors/Matrices: MATLAB can create and manipulate arrays of 1 (vectors), 2
(matrices), or more dimensions
row vectors: a =11, 2, 3, 4] is a 1X4 matrix
column vectors: b =[5; 6; 7; 8; 9] is a 5X1 matrix, e.g.
> A =]J123; 789; 45 6]
A = 12
/7 8
4 5

o © W



Mathematical Functions in MATLAB

MATLAB offers many predefined mathematical functions for
technical computing, e.g.

cos(x) Cosine abs(x) Absolute value
sin(x) Sine angle(xX) Phase angle
exp(x) Exponential iconj(x) Complex conjugate
sqrt(x) Square root [log(x) Natural logarithm

Colon operator (:)

Suppose we want to enter a vector x consisting of points
(0,0.1,0.2,0.3,...,5). We can use the command

>>x =0:0.1:5;

Most of the work you will do in MATLAB will be stored in files called
scripts, or m-files, containing sequences of MATLAB commands to be
executed over and over again



Basic plotting in MATLAB

MATLAB has an excellent set of graphic tools. Plotting a given data set or
the results of computation is possible with very few commands

The MATLAB command to plot a graph is plot(x,y), e.g.

1

Sine function

>> X = 0:p1/100:2*p1; 08
>> y = sin(X); 06
>> plot(X,y) 04

0.2+

MATLAB enables you to add axis
Labels and titles, e.g. 02/

0.4+

>> xlabel ("x=0:2\p1°); o5
>> ylabel("Sine of X"); s

Sine of x
o

>> tile("Sine function®) - ‘ ‘ ‘ ‘ ‘
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Example 1: Sine Wave

Sine Wawe Signal

0.2 0.4 0.6
Time (s)

Power Spectrum of a Sine Wawe

10 20 30 40 50 60 70 80
Frequency (Hz)

Fs = 150; % Sampling frequency

t = 0:1/Fs:1; % Time vector of 1 second
f =5; % Create a sine wave of f Hz.
X =

nfft = 1024; % Length of FFT

% Take fft, padding with zeros so that length(X)

is equal to nfft
X = fft(x,nfft);

% FFT is symmetric, throw away second half

X = X(1:nfft/2);

% Take the magnitude of fft of x

mx = abs(X);

% Frequency vector

T = (0:nfft/2-1)*Fs/nfft;

% Generate the plot, title and labels.
figure(l);

plot(t,x);

title("Sine Wave Signal™);
xlabel("Time (s)");

ylabel ("Amplitude®);

figure(2);

plot(f,mx);

title("Power Spectrum of a Sine Wave®);
xlabel ("Frequency (Hz)");

ylabel ("Power");
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Example 2: Cosine Wave

Cosine Wavwe Signal

0.2

Power Spectrum of a Cosine Wave
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Fs = 150; % Sampling frequency

t = 0:1/Fs:1; % Time vector of 1 second
f =5; % Create a sine wave of f Hz.
X = cos(2*pi*t*f);

nfft = 1024; % Length of FFT

% Take fft, padding with zeros so that length(X) is

equal to nfft
X = fft(x,nfft);

% FFT is symmetric, throw away second half

X = X(1:nfft/2);

% Take the magnitude of fft of X

mx = abs(X);

% Frequency vector

T = (0:nfft/2-1)*Fs/nfft;

% Generate the plot, title and labels.
figure(l);

plot(t,x);

title("Sine Wave Signal™);

xlabel ("Time (s)7);

ylabel ("Amplitude®);

figure(2);

plot(f,mx);

title("Power Spectrum of a Sine Wave®);
xlabel ("Frequency (Hz)");

ylabel ("Power®);
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Example 3: Cosine Wave with Phase Shift

Cosine Wavwe Signal with Phase Shift

|
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Fs = 150; % Sampling frequency
0:1/Fs:1; % Time vector of 1 second
5; % Create a sine wave of T Hz.

ha = 1/3*pi; % phase shift

X = cos(2*pi*t*f + pha);

nfft = 1024; % Length of FFT

t
L
p

% Take fft, padding with zeros so that length(X) is

equal to nfft

X = fft(X,nfft);

% FFT is symmetric, throw away second half
X = X(1:nfft/2);

% Take the magnitude of fft of X

mx = abs(X);

% Frequency vector

T = (0:nfft/2-1)*Fs/nfft;

% Generate the plot, title and labels.
figure(l);

plot(t,x);

title("Sine Wave Signal™);

xlabel ("Time (s)7);

ylabel ("Amplitude®);

figure(2);

plot(f,mx);

title("Power Spectrum of a Sine Wave®);
xlabel ("Frequency (Hz)");

ylabel ("Power®);
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Example 4: Square Wave

Square Wave Signal

0.2 0.4 0.6 0.8 1
Time (s)

Power Spectrum of a Square Wawe

MW

20 40 60 80
Frequency (Hz)

Fs = 150; % Sampling frequency

t = 0:1/Fs:1; % Time vector of 1 second
f =5; % Create a sine wave of f Hz.
X = square(2*pi*t*f);

nfft = 1024; % Length of FFT

% Take fft, padding with zeros so that length(X) is

equal to nfft

X = fft(x,nfft);

% FFT is symmetric, throw away second half
X = X(1:nfft/2);

% Take the magnitude of fft of X

mx = abs(X);

% Frequency vector

T = (0:nfft/2-1)*Fs/nfft;

% Generate the plot, title and labels.
figure(l);

plot(t,x);

title("Square Wave Signal™);

xlabel ("Time (s)7);

ylabel ("Amplitude®);

figure(2);

plot(f,mx);

title("Power Spectrum of a Square Wave®);
xlabel ("Frequency (Hz)");

ylabel ("Power®);
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Example 5: Square Pulse

Square Pulse Signal

0.6

0.4}

Power Spectrum of a Square Pulse
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Fs = 150; % Sampling frequency

t = -0.5:1/Fs:0.5; % Time vector of 1 second
w = .2; % width of rectangle
X = rectpuls(t, w); % Generate Square Pulse

nfft = 512; % Length of FFT

% Take fft, padding with zeros so that length(X) is

equal to nfft

X = fft(x,nfft);

% FFT is symmetric, throw away second half
X = X(1:nfft/2);

% Take the magnitude of fft of X

mx = abs(X);

% Frequency vector

T = (0:nfft/2-1)*Fs/nfft;

% Generate the plot, title and labels.
figure(l);

plot(t,x);

title("Square Pulse Signal®);

xlabel ("Time (s)7);

ylabel ("Amplitude®);

figure(2);

plot(f,mx);

title("Power Spectrum of a Square Pulse®);
xlabel ("Frequency (Hz)");

ylabel ("Power®);
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Example 6: Gaussian Pulse

Gaussian Pulse Signal

60

Time (s)

Power Spectrum of a Gaussian Pulse
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Frequency (Hz)

30

Fs = 60; % Sampling frequency

t = -.5:1/Fs:.5;

X = 1/(sqrt(2*pi*0.01))*(exp(-t."2/(2*0.01)));
nfft = 1024; % Length of FFT

% Take fft, padding with zeros so that
length(X) i1s equal to nfft

X = fft(x,nfft);

% FFT is symmetric, throw away second half
X = X(1:nfft/2);

% Take the magnitude of fft of Xx

mx = abs(X);

% This iIs an evenly spaced frequency vector
T = (0:nfft/2-1)*Fs/nfft;

% Generate the plot, title and labels.
figure(l);

plot(t,x);

title("Gaussian Pulse Signal®);

xlabel ("Time (s)7);

ylabel ("Amplitude®);

figure(2);

plot(f,mx);

title("Power Spectrum of a Gaussian Pulse®);
xlabel ("Frequency (Hz)");

ylabel ("Power®);
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Example 7: Exponential Decay

Exponential Decay Signal
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Power Spectrum of Exponential Decay Signal

20 40 60
Frequency (Hz)

Fs = 150; % Sampling frequency

t = 0:1/Fs:1; % Time vector of 1 second
X = 2*exp(-5*t);

nfft = 1024; % Length of FFT

% Take fft, padding with zeros so that
length(X) is equal to nfft

X = fft(x,nfft);

% FFT i1s symmetric, throw away second
half

X = X(1:nfft/2);

% Take the magnitude of fft of x

mx = abs(X);

% This 1s an evenly spaced frequency
vector

T = (0:nfft/2-1)*Fs/nfft;

% Generate the plot, title and labels.
figure(l);

plot(t,x);

title("Exponential Decay Signhal®);
xlabel ("Time (s)");

ylabel ("Amplitude®);

figure(2);

plot(f,mx);

title("Power Spectrum of Exponential
Decay Signal*®);

xlabel ("Frequency (Hz)");

ylabel ("Power");
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Example 8: Chirp Signal

Qmpsmnd | Fs = 200; % Sampling frequency

t = 0:1/Fs:1; % Time vector of 1 second

X = chirp(t,0,1,Fs/6);

i nfft = 1024; % Length of FFT

% Take fft, padding with zeros so that
length(X) is equal to nfft

X = fft(x,nfft);

% FFT is symmetric, throw away second half
X = X(1:nfft/2);

% Take the magnitude of fft of x

0.2 0.4 0.6 0.8 1 mx = abs(X);
Time (s) % This is an evenly spaced frequency
vector

f = (0:nfft/2-1)*Fs/nfft;

Power Spectrum of Chirp Signal % Generate the plot, title and labels.

| | | | figure(1);

plot(t,x);

title("Chirp Signal®);

xlabel("Time (s)7");

ylabel ("Amplitude™);

i figure(2);

plot(f,mx);

1 title("Power Spectrum of Chirp Signal®);
xlabel ("Frequency (Hz)");

. . V\WWWV\N\/\)VVWN\/\N\NW

20 40 60 80 100 ylabel (*Power~);

Frequency (Hz)

26



