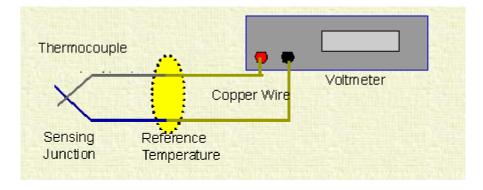
Department of Electrical Engineering

Instrumentation Lab <u>EE-702</u>

Experiment No.-5: Instrumentation of Temperature.

Objective: Study of Thermocouple and Thermistor as temperature transducer with an instrumentation trainer. Obtain the operational and calibration characteristics and time response of both.

Equipment / Apparatus required: Temperature instrumentation tutor, multi meter, Thermometer, electric kettle, stop watch.


<u>Theory :</u>

(a): Thermocouple

Thermocouple works on principle of Seeback effect. It states that when two wires of dissimilar metals are joined together and the junctions are kept at different temperature. A voltage is generated called thermo-electric emf. (refer to figure:1). Therefore it is called active transducer. The voltage created is of the order of several microvolts per degree of temperature difference. The emf is given by:

$$E = a + b \; \Delta T$$

where a & b are constant and ΔT is the temperature difference between the two junctions.

(b): Thermistor

Thermistor as temperature sensors are constructed from sintered metal oxide in a ceramic matrix whose electrical resistance varies with temperature. They are sensitive but highly non-linear. Thermistor are commonly used with bridge circuits as signal conditioner and therefore referred to as passive transducers.

Thermistor resistance is a function of absolute temperature with the following relationship:

$$R = R_0 * e^{\beta (1/T - 1/T0)}$$

Here R_0 , R are the respective resistance values when the surrounding temperature is T0, T (K). β is the Thermistor constant.

Specifications:

Range of Thermocouple	: $0-100^{\circ} C$
Resolution	: $0.1^{\circ} C$
Range of Thermistor	: $0-100^{\circ} C$
Resolution	: $0.1^{\circ} C$
Display Adjustments	 3 ¹/₂ digit Zero adjust, Span calibration

Diagram:

Identify the various stages of functional block diagram (figure2(a,b)) from input to output from the panel diagram and circuit diagram attached (figure 3) for both the transducer and report.

Procedure:

- 1. Thermistor and Thermo-couple can be connected to the measuring unit by a 9 pin connector and can be used one at a time by selection with a toggle switch.
- 2. Switch on the unit, check : red LED
- 3. Toggle the switch at 1 for Thermistor.
- 4. Measure the initial water temperature by thermometer and adjust the display reading by zero adjustment pot.
- 5. Boil the water up to 100° C and set the span for full scale deflection.
- 6. Take the fresh water.
- 7. Start again from minimum temperature and take the reading in steps of analog voltage output, digital readout of temperature in steps of 10^0 C and note corresponding time with help of watch. Record in the table of observations.
- 8. Toggle the switch at 2 for Thermocouple and repeat steps from 4 to 7.

Observations:

1. Thermistor:

S.No.	Temperature(⁰ C)	Analog output,(mV)	Digital reading(⁰ C)	Time
1	Room temperature			0.0
2	Increment of 10 ^o C from room temp			
11	100			

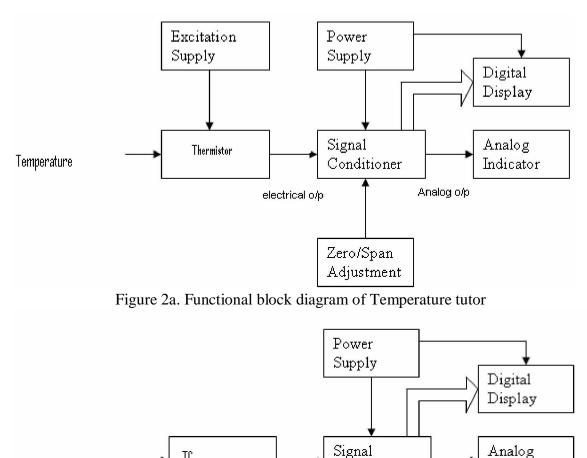
2. Thermocouple:

S.No.	Temperature(⁰ C)	Analog output,(mV)	Digital reading(⁰ C)	Time
		output,(mV)	reading(⁰ C)	
1	Room temperature			0.0
2	Increment of 10 °C from			
	room temp			
11	100			

Results :

Plot the following set of graphs for both Thermistor and Thermocouple sensors :

- 1. Temperature vs. analog output,
- 2. Temperature vs. time,
- 3. Analog output vs. time
- 4. Calibration graph : Thermometer reading vs. Display


Discussion:

- 1. What is the typical nature of temperature-Resistance characteristic of Thermistor? Draw.
- 2. What are the Peltier and Thomson effects? How do they affect TC output?
- 3. What are the different types of Thermocouple? Draw characteristics.
- 4. What is the difference between PTC Thermistor and NTC Thermistor? Draw characteristics.
- 5. What could be industrial applications of each?

- 6. Compare the application potential of Thermistor and thermocouple in term of characteristics and features.
- 7. What is reference junction compensation, what are the different techniques?
- 8. What is Steinhart-Hart equation?

References :

1. Principle of Industrial instrumentation-
2. Instrumentation-Devices & Systems-Patranabis,D.
Rangan, Sarma, Mani

Temperature TC Signal Conditioner Indicator electrical o/p Analog o/p Zero/Span Adjustment

Figure 2b. Functional block diagram of Temperature tutor