EXPERIMENT: 2

OBJECTIVE:

To measure Positive, Negative and zero sequence impedance of the given 3 phase transformer

APPARATUS:

(1) 3 Phase variac
(2) Ammeter, voltmeter, watt meter.

Range of apparatus depends on rating of transformer.

THEORY:

(A) Positive and negative sequence impedance: Refer fig 1. (Assuming Y-Y connections. However, connections do not change value of -ve and +ve sequence impedance.
(B) Zero sequence impedance: here neutral connection will depend upon magnitude of the impedance besides the nature of connection of windings. [Refer fig 2,3 and 4]

PROCEDURE:

FOR Z1 (or Z2) L. V winding for Zo, give reduced voltage and take measurements.

CONNECTION DIAGRAM:

Fig: 1

For determination of Z_{01}

Fig: 2
For determination of Z_{02}

Fig: 3

For determination of Z_{03}

220v Single phase supply

N

CALCULATIONS:

$Z_{1}=$ Positive sequence impedance
$Z 2=$ Negative sequence impedance
$\mathrm{Z} 1=\mathrm{V} / \mathrm{I}_{1} ; \mathrm{R}_{1}=\mathrm{W} / \mathrm{I}_{1}{ }^{2} ; \mathrm{X}_{1}{ }^{2}=\mathrm{Z}_{1}{ }^{2}-\mathrm{R}_{1}{ }^{2}$
For Z_{0},
$\mathrm{I}=3 * \mathrm{I}_{0}$
$\mathrm{Z}_{0}=\mathrm{E} / \mathrm{I}_{0}$
$\mathrm{R}_{0}=\mathrm{W} /\left(3 * \mathrm{I}_{0}\right)^{2}$
$\mathrm{X}_{0}=\mathrm{Z}_{0}{ }^{2}-\mathrm{R}_{0}{ }^{2}$

Observations:

(1) Positive / negative sequence imepedance:

Voltage(volts)	Current(amps)	Power(watts)

This is for finding Z_{1} and Z_{2}
(2) For Z_{0} i.e, zero sequence impedance:

Voltage(volts)	Current(amps)	Power(watts)

Calculate Z_{0} for fig 2, $3 \& 4$ (different connections)

RESULTS:

(1) $\mathrm{Z}_{01}=$
$Z_{02}=$
$Z_{03}=$
(2) $Z_{1}=$
$Z_{2}=$

