EXPERIMENT: 2

OBJECTIVE:

To measure Positive, Negative and zero sequence impedance of the given 3 phase transformer

APPARATUS:

- (1) 3 Phase variac
- (2) Ammeter, voltmeter, watt meter.

Range of apparatus depends on rating of transformer.

THEORY:

- (A) Positive and negative sequence impedance: Refer fig 1. (Assuming Y-Y connections. However, connections do not change value of -ve and +ve sequence impedance.
- (B) Zero sequence impedance: here neutral connection will depend upon magnitude of the impedance besides the nature of connection of windings. [Refer fig 2,3 and 4]

PROCEDURE:

FOR Z1 (or Z2) L. V winding for Zo, give reduced voltage and take measurements.

CONNECTION DIAGRAM:

Fig: 1

For determination of Z_{03}

CALCULATIONS:

Z_1 = Positive sequence impedance

Z2= Negative sequence impedance

$$Z1=V/I_1$$
; $R_1=W/I_1^2$; $X_1^2=Z_1^2-R_1^2$

For Z₀,

 $I = 3 * I_0$

 $Z_0 = E/I_0$

 $R_0 = W/(3*I_0)^2$

 $X_0 = Z_0^2 - R_0^2$

Observations:

(1) Positive / negative sequence imepedance:

Voltage(volts)	Current(amps)	Power(watts)

This is for finding Z_1 and Z_2

(2) For Z_0 i.e, zero sequence impedance:

Voltage(volts)	Current(amps)	Power(watts)

Calculate Z_0 for fig 2, 3&4 (different connections)

RESULTS:

(1) $Z_{01}=$ $Z_{02}=$ $Z_{03}=$ (2) $Z_{1}=$ $Z_{2}=$