EXPERIMENT: 1

OBJECTIVE:

Pre determination and verification of ABCD parameters of transmission line.

THEORY:

Fig 1(Model of line)
Experimental determination of these parameter can be done by employing voltmeter and ammeters for measurement for their magnitudes and wattmeter suitably used for phase angle measurement.

PROCEDURE:

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{V}_{\mathrm{S}} \mathrm{I} \cos \Theta_{1} \\
& \mathrm{P}_{2}=\mathrm{V}_{\mathrm{r}} \mathrm{I} \cos \Theta_{2} \\
& \mathrm{~A}=\frac{\mathrm{Vs}}{\mathrm{Vr}} \quad \text { at } \mathrm{I}_{\mathrm{r}}=0
\end{aligned}
$$

Fig 2 for determining A

For parameter: A

(1) Keeping receiving end voltage open(no load) as shown in fig 2 ,measure V_{s} V_{r}, I and power P_{1} (when voltage and coil of wattmeter is excited by V_{s})and power P_{2} (when voltage coil of wattmeter is excited by V_{r})

Fig 3 For determining C

For parameter: C

(2) Connect as show in fig 3 , Measure $\mathrm{V}_{\mathrm{r}}, \mathrm{I}_{\mathrm{s}}$, and P (wattmeter current coil excited by I_{s}, and voltage coil excited by V_{r})

Note: Take V_{r} as reference phasor \& use a low p.f wattmeter.

Fig 4 For determining B

$$
\mathrm{B}=\mathrm{B}<-\theta
$$

(3) Short circuit the receiving end side as shown in fig 4. Apply reduced voltage at sending end and try to flow rated I_{r} (about 1.0 amps). Measure $\mathrm{V}_{\mathrm{s}}, \mathrm{I}_{\mathrm{r}}$ and power.

Fig 5 For determining D

$$
\mathrm{D}=\mathrm{D}<-\theta
$$

(4) Connect the circuit as shown in fig 5. Short the receiving end as shown and apply reduced voltage so as to flow approximately 1.0 amps at receiving end. Measure $\mathrm{I}_{\mathrm{s}}, \mathrm{I}_{\mathrm{r}}$ and P_{1} (With voltage coil connected across mains and current coil being excited by I_{s}) and P_{2} (With voltage coil connected across mains and current coil being excited by I_{r}). Measure $\mathrm{P}_{1}, \mathrm{P}_{2}$ and V.

RESULT:

