SCOTT CONNECTION

Exp no: 7

<u>Aim:</u> To obtain a balanced two phase supply from three phase system by using Scott connection. <u>Apparatus required:</u>

S.no	Name of the Apparatus	Range	Туре	Quantity
1.	Ammeter	(0-5,10)A	MI	3
2.	Volt meter	(0-150,300)V	MI	3
3.	Load			
4.	Variac			
5.	Connecting	2.5sq.mm	Copper	Few
	wires		/Aluminum	

Name plate details:

	Transformer 1	Transformer 2
KVA		
LV Voltage		
HV Voltage		
Frequency		

Precautions:

- 1. Loose connection must be avoided
- 2. Properly rated and required range meters should be used.
- 3. Taping ratio must be properly observed.

Procedure:

- 1. Connect as per circuit diagram.
- 2. Ensure that the switches S1,S2 and S3 are open.
- 3. Adjust the 3 phase variac from minimum voltage to its output.
- 4. Switch ON the AC supplies and apply the rated voltage across the primaries of transformers.
- 5. Record the voltage V1,V2 and V3 and verify that the output is a balanced two phase supply.
- 6. Switch ON the AC supplies again, adjust the output voltage of the variac as per the rated voltage of primaries of transformers.
- 7. Close the switches S1 and S2 to load both the secondary. Adjust equal loading condition also.
- 8. Switch OFF the load from both the secondary and adjust the variac, so that its output voltage is minimum and then switch OFF the supply.

<u>Circuit diagram:</u>

Observation Tables:

SL.NO.	V1	V2	V3

Formulae:

Vector sum of V1 & V2 should equal to $(V1^2+V2^2)^0.5$.

<u>Result</u>: thus three phase to two phase conversion is observed in Scott connection.