EE 21381 Advanced Power Systems and Protection Lab FIRST SEMESTER (E-III) List of experiments for Advanced Power System protection – Modified 29/08/2018 Prof. Nand Kishor, EED

S. No.	Name of Experiment	Name of Student		
Simula	Simulation Based (Signal Processing application to Power System Protection)			
1.	(a) For a given aperiodic pulse, use Matlab function <i>sinc</i> to obtain the Fourier Transform for frequency range [-5 5] in interval of 0.01. Also plot the amplitude and phase spectrum separately. Use function <i>abs</i> and <i>angle</i> .	Mr. Baru Chauhan		
	 (b) For the above signal, perform the Fourier integral numerically. Find the complete transform over a range of frequencies [-5 5], using for loop and using function <i>trapz</i> (c) Study on Nyquist frequency criteria for a given sine wave. 			
2.	Determine the approximate Fourier transform of an infinite duration signal, i.e. find the amplitude spectrum of two frequency	Mr. Dinesh Kr. Singh		
۷.	signal. $x(t) = \cos(2\pi 100t) + \cos(2\pi 500t)$	Wit. Diffesti Ki. Shigh		
	a) Plot the signal.			
	b) Obtain approximate Fourier transform integral for $0 \le f \le 800$ Hz. Use 'for' loop and function trapz. Plot amplitude			
	spectrum.			
	c) Change sampling interval by a factor of 10, i.e. 0.002 sec and decrease number of samples to 25. Repeat plot problem			
	(ii). Discuss on approximation.			
3.	 d) Consider sampling interval of 0.0002 sec and increase number of samples to 500. Repeat problem (ii). Obtain the FFT and power spectrum for the following signals: 	Mr. Prashant Biswas		
5.	$x_1(t) = -10 + 10\cos(120\pi t + 1) + 5\cos(240\pi t + 2) + 2\cos(360\pi t + 3) + \cos(600\pi t + 5) + 10e^{-40t}$	WII. Flashallt Biswas		
	$x_1(t) = 10 \cos(120\pi t + 1) + 5\cos(210\pi t + 2) + 2\cos(600\pi t + 5) + \cos(600\pi t + 5) + 10e^{-40t}$ $x_2(t) = 10\cos(120\pi t + 1) + 5\cos(360\pi t + 3) + 2\cos(600\pi t + 5) + \cos(840\pi t + 7) - 10e^{-40t}$			
	(i) Sampling frequency = 2880 Hz, Number of samples per half cycle = 48 .			
	(ii) Reduce sampling frequency to = 1440 Hz. Discuss on the plots.			
4.	Use Matlab functions <i>fft</i> , <i>ifft</i> and <i>fix</i> function in to remove noise from signals.	Mr. S. Gopi Chandra		
	Generate random noise using function "randn". The original signal is given as:	-		
5.	(a)Use Matlab functions <i>fft</i> , <i>ifft</i> and <i>fix</i> function in to remove noise from signals.	Mr. Ankur Singh		
	Generate random noise using function " <i>randn</i> ". The original signal is given as:			
	$y(t) = 3\sin(8\pi t) + 5\sin(4\pi t)$			
	The signal is sampled during 4 sec at a sampling rate of 0.01.			
	(b)Use <i>fft</i> and <i>ifft</i> function to determine the power spectrum and phase. Consider a current signal which does not have noise, but it has DC offset. The fault current on unloaded system is given as:			
	$i(t) = 10sin(100\pi - 30^{\circ}) + 5e^{-10\pi t}$			
6.	(a) Use function <i>fft</i> function on given time series signals (of different frequency) for power spectrum and phase. Sampling	Mr. Anurag Yadav		
•••	frequency is 1000 Hz and FFT length, $N = 256$.			
	(b) Using above sampling frequency and FFT length, for the given time series signal (of different frequency), obtain the power			
	spectrum and phase. Comment on results.			
	(c) Repeat part (b) with reduced FFT length, $N = 128$.			
	(d) Repeat part (b with reduced FFT length, N = 64.			
7.	Current transformer saturation detection and its effect on the performance of Distance Relay.	Mr. Omkar Yadav		
Protect	tion issues with Distributed Generation(simulation)			
8.	Study on design of Butterworth low pass filter using functions butter, filter.	Mr. Dinesh Kr. Singh		
	Consider 2 nd order Butterworth low pass filter with cut off frequency of 300 Hz. Sampling frequency=4000 Hz. Use matlab			
	function "butter" to obtain filter coefficients (numerator and denominator). Use function "filter" to get amplitude and phase			
	plot. Apply the full cycle, half cycle DFT at output of low pass filter.			
	The input signal has 3 rd & 5 th harmonic component.			

	$x_1(t) = 10\sin(2pi50t) + 0.1\sin(2pi150t) + 0.01\sin(2pi250t) + e^{-t2pi0.5}$			
	Sampling frequency = 1000 Hz, FFT length= 256.			
9.	Formulate a protection coordination problem in a standard benchmark distributed system	Mr Ashutosh Kumar Singh		
10.	(a)Use function dft to compute spectrum with frequency resolution to be equal to or less than 8 Hz.	Ashutosh Kumar Singh/		
	(b)Use function dft and sero padding to compute the spectrum. The signal is given as:	Mr. Ankur Singh		
	$x(n) = 2\sin\left(2000\pi \frac{n}{8000}\right)$			
	Obtained by sampling the analog signal $x(t) = 2sin(2000\pi t)$ with a sampling rate of $f_s = 8000$ Hz.			
Renewable Energy - Simulation based				
11.	Obtain the aerodynamic, Cp-lambda of a three bladed wind turbine for given parameters.			
12.	To simulate a given PY Array and to plot the 1-Y characteristics using Matlab.			
13.	Simulate the dynamics of single area system (Load frequency control problem) as 3 rd order system with given parameters.	Mr. Anurag Yadav		
Protection -Experiment based				
14.	To study characteristics of over current relays; IDMT electromagnetic relay and microprocessor based relay.	Mr. Dinesh Kr. Singh		
15.	Study the construction of the Thermal relay. ii Find operational characteristics of the relay. Determine time-current characteristics of given fuse.	Mr. Baru Chauhan		
16.	Digital Over Current Relay Setting and Relay Coordination.	Mr. Prashant Biswas		
17.	Simulation and Implementation of Voltage Source Inverter	Mr. Prashant Biswas		
18.	Coordination of over-current and distance relays for radial line protection	Mr. S. Gopi Chandra		
Renewable Energy - Experiment based				
19.	For the given design of PSS, obtain the root locus and frequency response and compare them with two different techniques.	Mr. Anurag Yadav		
20.	Simulate (in Simulink) the PSS with excitation system for a change in step voltage (0.05 pu) and frequency deviation $0.05sin(2\pi0.5t)$.	Mr. S. Gopi Chandra		