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CHAPTER 8          REAL-TIME PROCESSING ALGORITHMS   
 
In many applications including digital communications, spectral analysis, audio processing, and 

radar processing, data is received and must be processed in real-time.  In some applications, the 

incoming data sequence is very large and simply exceeds the memory capacity of the processor.  

In other applications, the time delay associated with waiting for all the data to arrive before 

processing is simply unacceptable.  Processing data in real-time involves breaking the input data 

sequence into blocks of data and processing each block of data separately.  The chapter begins 

with the implementation of difference equations in the time domain and the use of circular 

addressing.  Next, Overlap-Add and Overlap-Save, two algorithms for real-time convolution or 

correlation computations using FFTs, are presented. Block processing of input data for real-time 

spectral analysis using FFTs is covered in Section 8.3.  The Sliding Discrete Fourier Transform, 

which is a real-time implementation of a Discrete Fourier Transform, is explored in the fourth 

section.  In the final section, adaptive filters for noise and echo cancellation and system 

identification are introduced. 

 
8.1  DIFFERENCE EQUATIONS AND CIRCULAR ADDRESSING 

 

Difference equations used for FIR filters, IIR filters, and the Goertzel algorithm naturally lend 

themselves to real-time processing.  Consider the difference equation for an FIR filter introduced 

in Chapter 5: 
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(8.1) 

The output at any time kTs is computed by simply multiplying the current input and the N most 

recent past input values by the filter coefficients and summing up the results.  At any sampling 

time instant, the only data values that need to be stored in memory are the current input and N 

past inputs.  In the next sampling instant, the oldest data value will be discarded and replaced 

with the newest input data value.  Real-time implementation of the filter becomes a matter of 

taking in a new input value at each sampling instant, discarding the oldest value, then performing 

the N + 1 multiplications and N additions to calculate the next output.  Of course, the processor 

must be fast enough to perform the calculations within one sampling instant and the input signal 

itself must be sampled fast enough to maintain fidelity with the original analog signal.  IIR filters 

require storage of a finite number of past outputs in addition to current and past inputs but the 

basic principle is the same.  The Goertzel algorithm, discussed in Chapter 7 for determining the 

spectrum at a finite number of select frequencies, is simply a 2nd order difference equation 

requiring two past outputs and the current input. 

 

The input data values and past output values (if needed), can be stored and accessed using 

circular addressing.  The required data is stored in a buffer of fixed length as shown in Figure 

8.1.  When the new data value comes in, instead of shifting all the data in memory which would 

use up valuable processing time, the newest value simply replaces the oldest value with a pointer 

showing where the newest value is located.  As multiplications are performed, the pointer moves 

through the buffer and “circles” or wraps around to the top when the bottom of the buffer is 

reached.   
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time = kTs  time = (k+1)Ts  time = (k+2)Ts  

x(k – 4)  x(k – 4) ← oldest x(k + 2) ← newest 

x(k – 5) ← oldest x(k + 1) ← newest x(k + 1)  

x(k) ← newest x(k)  x(k)  

x(k – 1)  x(k – 1)  x(k – 1)  

x(k – 2)  x(k – 2)  x(k – 2)  

x(k – 3)  x(k – 3)  x(k – 3) ← oldest 

 

Figure 8.1:  Circular Addressing 

 

If the filter order is very large, processing in the time domain is not as efficient as frequency 

domain processing.  As discussed in Chapter 7, FFTs can be used to compute the filter output 

efficiently for high order filters and long sequences of input data.  The next section presents the 

overlap add and overlap save algorithms for real-time convolution or correlation using blocks of 

input data and FFTs.   

 

8.2  OVERLAP-ADD AND OVERLAP-SAVE ALGORITHMS FOR CONVOLUTION OR 

CORRELATION  

 

Overlap-add and overlap-save are useful algorithms for real-time computation of the convolution 

or correlation of two sequences using FFTs.  One practical example of this would be using a 

digital FIR filter to filter a long sequence of input data.  In this case, the filter output is the 

convolution of the input data and the filter coefficients.  Rather than waiting for all the input data 

to arrive, the convolution can be processed in blocks. Recall from Chapter 7 that if the filter has 

an order N > 128, it is computationally efficient to use FFTs to compute the convolution (fast 

convolution) instead of working in the time domain.  Another practical application would be to 

correlate an incoming stream of data with a template of reference signals for voice identification, 

finger print identification, radar target identification, or other purposes. The correlation can be 

computed in real-time using FFTs as blocks of input data become available. 

 

Overlap-Add Algorithm 

Assume the data input sequence, x(k) has length L, the filter impulse response, h(k), has length 

N, and L >> N).  The procedure to compute y(k) = x(k)*h(k) is as follows: 

 

1. Partition x(k) into blocks of length N by simply using data buffers of length N.  Call these 

partitioned sequences x0, x1, x2, … 

 

2. Convolve each block of input data, as it becomes available, with h(k) using fast 

convolution (FFTs): 

yi = ifft [fft(xi
padded

) ∙ fft(hi
padded

)] 

 

Note that the block of input data and the filter coefficients must be padded with zeros so 

each have length 2N – 1.  The result of each block convolution will be an output 

sequence also of length 2N  1.  Call these blocks of results y0, y1, y2, … 
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3. The output sequence is then constructed from the individual convolution results by 

 

 )2()()()( 21 NkyNkykyky o  

 

The over-lap add algorithm is illustrated in Example 8.1 using very simple and short sequences.  

 

 

Example 8.1:  Computing Convolution using Overlap Add 

 

Suppose x(k) = [1  4  2  5  1  3  7 ] and h(k) = [ 1   3 ].  Compute y(k) = x(k) * h(k) using the 

overlap add algorithm and check the results using the MATLAB®  function, conv. 

 

Solution 

 

1. First partition x(k) into sequences of length N = 2: 

 

x0 = [ 1  4 ]        x1 = [ 2  5 ]          x2 = [ 1  3 ]       x4 = [ 7  0 ] 

 

2. Now compute each individual block convolution (since this example is being done by 

hand with very short sequences, the convolution will be computed in the time domain 

rather than using FFTs): 

 

y0 = x0 * h(k) = [ 1   1   12 ] 

y1 = x1 * h(k) = [ 2   11   15] 

y2 = x2 * h(k) = [ 1    6    9] 

y3 = x3 * h(k) = [ 7   21   0] 

 

3. Now construct y(k) from the individual block convolutions: 

 

    [ 1   1   12 ] 

                             [ 2   11   15] 

                                          [ 1     6     9] 

                                                        [ 7   21   0] 

y(k) =    [  1   1   14   11   16    6   16   21   0] 

 

Checking the result with MATLAB yields the same result: 

 
x = [-1 4 2 5 1 3 7]; h = [1 3]; y = conv(x,h) 

 

y =    -1     1    14    11    16     6    16    21 
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Overlap-Save Algorithm 

Assume the data input sequence, x(k) has length L, the filter impulse response, h(k), has length 

N, and L >> N).  The procedure to compute y(k) = x(k)*h(k) is as follows: 

 

1. Add N – 1 leading zeros to the input data sequence, x(k). 

2. Partition the input data sequence (with the added zeros) into segments that overlap by     

N – 1.  Choose a segment length M ≈ 2N which is preferably a power of 2.  Call these 

partitioned sequences x0, x1, x2, … 

3. Zero pad h(k) using trailing zeros so that it is length M. 

4. Perform periodic convolutions on the blocks of data (as they become available in real 

time) and the padded h(k) using FFTs.  This will yield sequences y0, y1, y2, … of length 

M: 

𝑦𝑖 = 𝑖𝑓𝑓𝑡 [𝑓𝑓𝑡(𝑥𝑖) ∙ 𝑓𝑓𝑡(ℎ𝑖
𝑝𝑎𝑑𝑑𝑒𝑑)] 

 

5. Discard the first N – 1 samples from each of the individual convolutions, then paste the 

resulting segments together to form the output, y(k). 

 

Example 8.2:  Computing Convolution using Overlap Save 

 

Suppose x(k) = [1  4  2  5  1  3  7 ] and h(k) = [ 1   3 ].  Compute y(k) = x(k) * h(k) using the 

overlap save algorithm and compare the results to Example 8.1. 

 

Solution 

In this example, L = 7 and N = 2.   

 

1. First, add N – 1 = 1 leading zero to the input sequence: 

 

  x = [0  1  4  2  5  1  3  7 ] 

 

2. Next, partition x into segments of length M = 4 (≈2N and a power of 2) that overlap by  

N – 1 = 1: 

 

    x0 = [0  1  4  2]        x1 = [ 2  5  1  3 ]          x2 = [ 3  7  0  0 ]      

 

3. Pad h(k) with trailing zeros to make it length M = 4: 

 

h =  [ 1  3  0  0] 

 

4. Convolve the sections using periodic convolution (regular convolution with wraparound 

to make length = 4).  Once again, since the sequences are so short for this example, 

computations will be done in the time domain instead of using FFTs: 

 

x0 * h = [ 0  1  1  14  6  0  0 ]   →  y0 = x0 ● h = [ 6  1  1  14] 

 

x1 * h = [ 2  11  16  6  9  0  0 ]   →  y1 = x1 ● h = [ 11  11  16  6] 
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x2 * h = [ 3  16  21  0  0  0  0 ]   →  y2 = x2 ● h = [ 3  16  21  0] 

 

5. Discard the first N – 1 = 1 samples from each section then past directly together to get the 

output: 

 

y(k) = [ 1  1  14  11  16  6  16  21  0]  

 

The results of this example are identical to the results in example 8.1. 

 

Overlap add and overlap save are both efficient algorithms for computing a convolution or 

correlation in real-time.   How do the two algorithms compare? 

 

 The overlap save algorithm does not require that any of the previous convolution results 

be saved since the output is determined simply by pasting individual sections together.  

However, it does require that some of the input data from the previous partition be saved 

and used in the next data segment and convolution calculation. 

 The overlap add algorithm requires that one previous convolution result be saved and 

combined with the current convolution result.  However, once a block of input data is 

used for convolution, it can be discarded. 

 The convolution step in both overlap add and overlap save uses FFTs (fast convolution).  

Overlap save is set up beautifully for fast convolution since the segment convolutions are 

periodic convolutions.  Overlap add requires zero padding of the input segments and filter 

coefficients following the procedure outlined in Chapter 7 on fast convolution. 

 For both methods, the FFT of the padded filter coefficients, h(k), can be computed ahead 

of time and stored in memory. 

 Both methods have about the same computational complexity – the number of real 

multiplications is roughly   

 
L

M
∙ M2    using time domain convolution 

 

𝐿 𝑀⁄ [12N̅log2(2N̅) +  8N̅]      using FFTs for the convolution                    (8.2) 

 

where L is the length of the input data sequence, x(k), N is the length of h(k), M is the 

length of the partitions of x(k), and �̅� is the smallest power of 2 that is greater than or 

equal to M.  Compare this equation to the number of multiplies for fast convolution 

summarized in Section 7.5.  The only difference is the pre-multiplier of L/M which is 

simply the number of partitions of the input sequence, x(k), or equivalently the number of 

individual convolutions that need to be performed. 
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8.3  REAL-TIME SPECTRAL ANALYSIS USING FAST FOURIER TRANSFORMS  

 

Analyzing the spectrum of a signal in real-time using Fast Fourier Transforms is accomplished 

by collecting blocks of input data samples and performing an FFT on each block of data.  The 

process is illustrated in Figure 8.2. 

 

 
Figure 8.2:  Real-Time FFT Processing 

 

 

As indicated in Figure 8.2, the input signal is sampled and these samples are stored in a buffer of 

size N.  Once the buffer is full, an FFT is computed for the block of N data samples.  As 

discussed in Section 7.2, the input data samples are windowed prior to computing the N-PT FFT 

to enhance the spectral analysis. 

 

There are several important considerations in performing real-time FFT processing: 

 

 The sampling rate, Fs, must of course be chosen to exceed twice the bandwidth of the 

input signal to avoid aliasing. 

 The duration of time, D, over which the input signal is sampled for each FFT 

computation must be chosen carefully.  Increasing D will improve the resolution of the 

FFT since fo = 1/D.  However, if the time duration is chosen too long, then changes in the 

spectrum of input signal could be missed.   The time duration, D, directly affects the size 

of the FFT since N = D∙Fs which means a longer time duration results in a larger FFT.  

 The choice of a window function is application dependent.  As discussed in Section 7.2, 

windowing can be used to reduce the effects of leakage.  Each window function has its 

own somewhat unique characteristics which affect how the leakage is re-distributed. 

 Overlapping the blocks of input data can be very beneficial to the spectral analysis, 

particularly when windowing is included.  In other words, if the block size is 1024, the 

last 256 input samples of a block could become the first 256 samples of the next block.   

 

As mentioned above, the choice of time duration for each block of input data has a big effect on 

the resulting FFT.  If the time duration is too long, then short burst changes in the input signal 

could be missed (poor time resolution).  Decreasing the time duration, D, will certainly improve 

the time resolution but will definitely degrade the frequency resolution.  Example 8.3 illustrates 

this trade-off between time resolution and frequency resolution.  

 

 

w(k) 

window function 

Buffer 

Size = N 
x(t) 

input signal 

A/D 

Converter 

Fs  

N-PT 

FFT 
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Example 8.3:  Trade-off Between Time Resolution and Frequency Resolution 

 

(a)  Suppose the input signal is 𝑥1(𝑡) = { 
sin(2𝜋(100)𝑡)             
sin(2𝜋(300)𝑡)             
sin(2𝜋(100)𝑡)             

0𝑠 ≤ 𝑡 < 0.75𝑠
0.75𝑠 ≤ 𝑡 < 1.25𝑠
1.25𝑠 ≤ 𝑡 ≤ 2.0𝑠

 

 

              The input signal is sampled at Fs = 1000 Hz (plenty fast) and the buffer length (FFT 

              length) is chosen to be N = 256.  The time duration, D, would therefore be 0.256 sec and 

              the frequency resolution would be 1000/256 ≈ 4 Hz.   Using Simulink® and MATLAB,  

              plot the FFT of x1(t) using block processing. 

 

(b)  Now change the input signal to 𝑥2(𝑡) = { 
sin(2𝜋(100)𝑡)             
sin(2𝜋(300)𝑡)             
sin(2𝜋(100)𝑡)             

0𝑠 ≤ 𝑡 < 0.95𝑠
0.95𝑠 ≤ 𝑡 < 1.05𝑠
1.05𝑠 ≤ 𝑡 ≤ 2.0𝑠

 

 

              Use the same sampling frequency and FFT length from part (a), plot the FFT of x2(t) 

              using block processing, and comment on the results. 

 

(c) Repeat part (b) with the FFT length reduced to 128.  Reducing the FFT length from 256 

to 128 will cut the time duration in half (D = 0.128 sec) and double the frequency 

resolution (fo = 1000/128 = 7.8125 Hz). 

 

(d) Repeat part (b) with the FFT length reduced to 64.  In this case, the time duration is 

further reduced to 0.064 sec while the frequency resolution increases to 15.625 Hz. 

 

Solution 

A Simulink model (Figure 8.3) is built for the block processing of the input signal and FFT 

computation.   

 
Figure 8.3:   Simulink Model for Block Processing of FFT 
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In the Window Function block, the window length is set equal to the FFT length, sample mode is 

Discrete, and sample time is 1/Fs. In the Short-Time FFT block, the analysis window length is 

set equal to the FFT length and the overlap is set to 0.  The sampling frequency is specified in the 

From Workspace block. 

 

(a)  The following commands in MATLAB define the input signal then plot the results of 

running the Simulink model 

 
Fs=1000; N = 256; 

t=0:1/Fs:2;     % Sampling times              

f=-N/2*Fs/N:Fs/N:(N-1)/2*Fs/N;  % Frequency bins for FFT 

% Define input signal, x, to be a 300 Hz sine wave from 0.75 to  

% 1.25 sec and 100 Hz at all other times 

x=sin(2*pi*100*t);  

x(750:1250)=sin(2*pi*300*t(750:1250));  

input=[t' x']; 

[K,F]=meshgrid(t,f);  % Set up mesh grid for 3-D plot 

  

Now run FFT Block Simulation (stop time should be set to 2 sec) then execute the following 

commands in the MATLAB workspace 
  

yfft(:,:)=yout(:,1,:); 

mesh(F,K,abs(fftshift(yfft,1))) 

 
 

Comments on Part (a): 

The resulting FFT spectrum is shown in Figure 8.4 (a).  It is clear from the plot that the input 

initially has a frequency component close to 100 Hz, the spectrum then switches to 

approximately 300 Hz, and then returns to 100 Hz.  Note that there is a time delay of 

approximately 0.25 sec in the spectrum.  This is the length of time required to fill the buffer with 

256 input values before the processing can begin.    

 

 

Challenge Question 8.1 

Close examination of the plot in Figure 8.4(a) reveals a very small peak at 300 Hz prior to the 

much larger peak and a very small peak at 100 Hz in between the two much larger peaks.  Why 

does this occur? 
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Figure 8.4a:  Spectrum for Example 8.3(a) 

 

 
Figure 8.4b:  Spectrum for Example 8.3(b) 
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Figure 8.4c:  Spectrum for Example 8.3(c) 

 

 
Figure 8.4d:  Spectrum for Example 8.3(d)  
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Figure 8.4e:  Spectrum for Part (d) – Rotated for a Different Perspective 

 

Figure 8.4:  Spectral Plots for Example 8.3 

 

(b) The following commands in MATLAB define the input signal then plot the results of running 

the Simulink model 

 
x=sin(2*pi*100*t);  

x(950:1050)=sin(2*pi*300*t(950:1050));  

input=[t' x']; 

 

Re- run FFT Block Simulation then run the following commands in MATLAB 
  

Clear yfft; yfft(:,:)=yout(:,1,:); 

mesh(F,K,abs(fftshift(yfft,1))) 

 

Comments on Part (b): 

The resulting FFT spectrum is shown in Figure 8.4(b).  Notice that a small peak at 300 Hz does 

appear in the spectrum; however, during the exact same period of time there is a much larger 

peak occurring at approximately 100 Hz.  The fact that the input signal is a pure 300 Hz wave 

between 0.95 sec and 1.05 sec is completely lost because the duration of time, D, over which 

blocks of input data are being analyzed is much longer than the period of time during which the 

input signal hits 300 Hz.  In other words, the buffer of input signal samples does include samples 

when the input is a 300 Hz tone, but it also includes a lot more samples of the 100 Hz tone.  Parts 

(c) and (d) of this example are an attempt to fix this problem by reducing the length of time over 

which the input signal is sampled. 
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(c) The following commands in MATLAB adjust the buffer length to 128 

 
% Change N to 128 and adjust frequency bins and meshgrid: 

Fs=1000; N = 128;           

f=-N/2*Fs/N:Fs/N:(N-1)/2*Fs/N; % Frequency bins for FFT 

[K,F]=meshgrid(t,f); % Set up mesh grid for 3-D plot 

  

Change the window lengths and FFT length in FFT Block Simulation to 128.  Re-run FFT 

Block Simulation then run the following commands in MATLAB 

 
Clear yfft; yfft(:,:)=yout(:,1,:); 

mesh(F,K,abs(fftshift(yfft,1))) 

  

 

Comments on Part (c): 

The resulting FFT spectrum is shown in Figure 8.4(c).  The 300 Hz signal is much more distinct 

in this spectrum; however, the spectrum still shows a 100 Hz signal (albeit much smaller) 

occurring in the same time period.  Also notice the widening of the peaks due to poorer 

frequency resolution. 

 

(d) The following commands in MATLAB adjust the buffer length to 64 

 
%Change N to 64 and adjust frequency bins and meshgrid: 

Fs=1000; N = 64;           

f=-N/2*Fs/N:Fs/N:(N-1)/2*Fs/N; % Frequency bins for FFT 

[K,F]=meshgrid(t,f); % Set up mesh grid for 3-D plot 

 
 Change the window lengths and FFT length in FFT Block Simulation to 64.  Re-run FFT 

Block Simulation then run the following commands in MATLAB 

 
Clear yfft; yfft(:,:)=yout(:,1,:); 

mesh(F,K,abs(fftshift(yfft,1))) 

  

 

Comments on Part (d): 

The resulting FFT spectrum is shown in Figure 8.4(d) and (e).  The time resolution has been 

improved enough to show the 300 Hz component occurring alone for a small period of time.  

Notice the degradation in the frequency resolution.  There is now much more uncertainty in the 

actual frequency of the two tones.   

 

 

Example 8.3 illustrates the effect of time duration on a real-time FFT.  The next example shows 

that overlapping the blocks of input data can be beneficial for real-time spectral analysis. 
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Example 8.4:  Overlapping Blocks of Data for FFT 

 

(a) Suppose the input signal is 𝑥1(𝑡) = { 
sin(2𝜋(100)𝑡)             
sin(2𝜋(300)𝑡)             
sin(2𝜋(100)𝑡)             

0𝑠 ≤ 𝑡 < 0.5𝑠
0.5𝑠 ≤ 𝑡 < 0.75

0.75𝑠 ≤ 𝑡 ≤ 2.0𝑠
𝑠 

 

 Using Simulink and MATLAB, plot the FFT of x1(t) using block processing.  Assume  

 a sampling frequency of 1000 Hz and an FFT length of 256. 

 

(b)  Now change the input signal to 𝑥2(𝑡) = { 

sin(2𝜋(100)𝑡)             

sin(2𝜋(300)𝑡)             
sin(2𝜋(100)𝑡)             

0𝑠 ≤ 𝑡 < 0.64𝑠
0.64𝑠 ≤ 𝑡 < 0.89
0.89𝑠 ≤ 𝑡 ≤ 2.0𝑠

𝑠 

 

              Use the same sampling frequency and FFT length from part (a), plot the FFT of x2(t) 

              using block processing, and comment on the results. 

 

(c)  Repeat part (b) but overlap the input data by 128 so that every block of 256 data points 

consists of 128 data points from the previous FFT calculation and 128 new data points.  

 

(d)  Repeat part (c) using an overlap of 192 so that every block of 256 data points consists of 

192 data points from the previous FFT calculation and 64 new data points. 

 

Solution 

The Simulink model used for Example 8.3 (see Figure 8.3) is also used for this example. 

 

(a)  The MATLAB commands for part (a) are identical to those of Example 8.3(a) with the 

following exception: 

 
x=sin(2*pi*100*t);  

x(500:750)=sin(2*pi*300*t(500:750));   

 
(b)  Change the input signal to x2(t) using the following MATLAB commands, re-run the 

simulation, then plot the results: 

 
x=sin(2*pi*100*t);  

x(640:890)=sin(2*pi*300*t(640:890)); 

input=[t' x']; 

 

Re- run FFT Block Simulation then run the following commands in MATLAB 
  

Clear yfft; yfft(:,:)=yout(:,1,:); 

mesh(F,K,abs(fftshift(yfft,1))) 

 

(c)  In the Simulink model, open up the Short-Time FFT block and change the overlap to 128.  

Re-run the simulation model and plot the results. 
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(d)  In the Simulink model, open up the Short-Time FFT block and change the overlap to 192.  

Re-run the simulation model and plot the results. 

 

The spectral plots for this example are shown in Figure 8.5 (a)-(d).   

 

Comments on results of Example 8.4: 

 

(a) As shown in Figure 8.5(a), the spectral plot for part (a) is a very nice representation of the 

spectrum of the signal x1(t).   It clearly shows that the signal is initially a 100 Hz tone, 

switches to a 300 Hz tone, and then reverts back to a 100 Hz tone. 

 

(b) The only difference between the signals x1(t) and x2(t) is the interval of time during 

which these signals become 300 Hz sine waves.  The signal x1(t) is a 300 Hz sine wave 

from 0.5 – 0.75 sec while the signal x2(t) is a 300 Hz sine wave from 0.64 – 0.89 sec.  

Even though both signals have a 300 Hz component for exactly the same length of time, 

both signals were sampled at exactly the same rate, and the same length FFT was used in 

both cases, the spectrum for x2(t) shown in Figure 8.5(b) is quite different from the 

spectrum of x1(t).  The spectrum in Figure 8.5(b) would indicate that x2(t) begins as a 100 

Hz tone, then becomes a two tone signal (100 Hz and 300 Hz), and finally reverts back to 

a 100 Hz tone.  What causes the big difference in results between parts (a) and (b)?  To 

answer this question, consider the windows of time over which the FFT is being 

calculated and what the input signal samples look like within these windows of time.   

This information is shown in Table 8.1.  In the case of x1(t), most of the samples of the 

300 Hz section of the signal fall into the same buffer and just about fill it.  In the case of 

x2(t), samples of the 300 Hz section get split between two adjacent buffers and fill only 

about half the buffer.  The other half of the buffer is filled with samples of the 100 Hz 

section.  Thus, the FFT calculation for these buffers indicates a two tone signal rather 

isolating the 300 Hz tone. 

 

(c) In part (c), an overlap of 128 is introduced for the FFT processing.  Each sampling 

window consists of 128 sample values from the previous window and 128 new sample 

values.  This creates overlapping windows of time, but does not reduce the size of the 

FFT so the frequency resolution remains the same.  As shown in Table 8.2 and also 

reflected in the spectral plot in Figure 8.5(c), this overlap allows the 300 Hz tone to be 

effectively isolated during one sampling window.  The spectrum still indicates a two tone 

signal in the adjacent sampling windows. 

 

(d) In part (d), the overlap is increased to 192 which means each input buffer consists of 192 

past sample values and 64 new sample values.  The resulting spectrum plotted in Figure 

8.5(d) shows better time resolution as the signal transitions from 100 Hz to 300 Hz then 

back to 100 Hz. 
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Figure 8.5a 

 

 
Figure 8.5b 
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Figure 8.5c 

 

 
Figure 8.5d 

Figure 8.5:  Spectral Plots for Example 8.4 
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Table 8.1:  Sample Intervals and Input Signal Content for Example 8.4(a)-(b) 

Time Interval 

for FFT 
x1(t) x2(t) 

 Number of 100 

Hz Samples 

Number of 300 

Hz Samples 

Number of 100 

Hz Samples 

Number of 300 

Hz Samples 

0 – 0.256 s 256 0 256 0 

0.256 – 0.512 s 244 12 256 0 

0.512 – 0.768 s 18 238 128 128 

0.768 – 1.024 s 256 0 134 122 

1.024 – 1.28 s 256 0 256 0 

1.28 – 1.536 s 256 0 256 0 

1.536 – 1.8 s 256 0 256 0 

1.8 – 2.046 s 256 0 256 0 

 

Table 8.2:  Sample Intervals and Input Signal Content for Example 8.4 (c) 

Time Interval for FFT x2(t) 

 Number of 100 Hz Samples Number of 300 Hz Samples 

0 – 0.256 s 256 0 

0.128  0.384 s 256 0 

0.256 – 0.512 s 256 0 

0.384 0.64 s 256 0 

0.512 – 0.768 s 128 128 

0.640  0.896 s 6 250 

0.768 – 1.024 s 134 122 

0.896 – 1.152 s 256 0 

1.024 – 1.28 s 256 0 

Remaining Intervals 256 0 

 

 

Challenge Question 8.2 

Example 8.4 shows that increasing the overlap of input sample values for spectral analysis 

results in a better reflection of how the signal spectrum varies over time.  What is the 

disadvantage of increasing the overlap? 

 

 

8.4 SLIDING DISCRETE FOURIER TRANSFORM 

 

The sliding DFT is a real-time implementation of a DFT.  The sliding DFT computes an N-point 

spectrum at each sampling instant; that is, every time a new data sample is taken.  This would be 

equivalent to the FFT block processing in the previous section using an overlap of N – 1 for an 

N-point spectrum.  The advantages of overlap were illustrated in Example 8.4; however, 

computing an N-point FFT every single sampling instant is much too complex.  The sliding DFT 

is a practical algorithm for computing the spectrum at each sampling instant.  The DFT was 

introduced in Chapter 7 and is computed as follows: 
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N-PT DFT 

 

At t = LTs (i.e., end of a sampling interval), let x(k) be the N input samples taken over the last 

sampling interval; that is, (L1)Ts < t < LTs. 

 

 

x(k) = [ x(L − (N − 1)Ts) … x((L − 1)Ts)  x(LTs) ] 
 

 

XDFT(nfo) =  ∑ x(k)𝑒−𝑗2𝜋𝑛𝑘 𝑁⁄      n = 0, 1, … N − 1

N−1

k=0

 

 

Bin Frequencies:      0, fo, 2fo, … (N − 1)fo   where fo = Fs N⁄  

(8.3) 

 

 

Computing a DFT for each frequency bin simply involves multiplying N consecutive input data 

values by the exponential weighting functions for that bin then adding the results.  It is really 

easy to understand how the sliding DFT algorithm was derived using the graphical illustration of 

an 8-pt DFT shown in Figure 8.6.  The discrete frequencies (or bin frequencies) for an 8-pt DFT 

are 0, fo, 2fo, 3fo, 4fo, 5fo, 6fo, 7fo.  The exponential weights for Bin 0 (f = 0 Hz) are all one so 

that case is not drawn.  The exponential weights for Bin 1 (f = fo Hz) are the eight weights 

equally distributed clockwise about the unit circle as shown in Figure 8.6.  The exponential 

weights for Bin 2 (f = 2fo Hz) are the eight weights obtained by taking every other weight in Bin 

1 starting with one, moving clockwise, and wrapping around the circle as many times as 

necessary.  The exponential weights for Bin 3 (f = 3fo Hz) are the eight weights obtained by 

taking every 3rd weight in Bin 1 starting with one, moving clockwise, and wrapping around the 

circle as many times as necessary.  This same pattern would continue to find the weights for Bins 

4-7.   

 

Given eight consecutive data samples, the DFT for each bin frequency is computed by 

multiplying the eight data values by the weights for that bin and adding the results.  In Figure 

8.6, it is assumed that the eight consecutive data samples are numbered 0, 1, 2, … 7.  These 

sample numbers are shown in the figure next to their corresponding weights. 

 

 

Challenge Question 8.3 

For a 16-pt DFT, assume the sixteen consecutive data samples are numbered 0, 1, 2, … 15.  

Sketch a diagram similar to the one in Figure 8.6 that shows how the data samples are distributed 

among the sixteen weights for Bin 5.  
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Figure 8.6:  Graphical View of Sliding DFT 
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Assume the DFT has been calculated for all eight bin frequencies using the data samples 0, 1, 2, 

… , 7.  Now a new data sample value is taken and we wish to compute a new DFT using the 

eight most recent sample values; that is, 1, 2, 3, … 8.  While it would certainly be possible to 

start all over again and compute a new DFT, this would not be smart.  Looking at the diagrams in 

Figure 8.6, three things must happen to find the new DFT: 

 

1. Discard the oldest data sample 

2. Rotate the remaining samples to their new corresponding weights 

3. Account for the newest data sample 

 

Since the weight on the oldest sample is always one, the oldest sample can be discarded by 

simply subtracting it directly from the previous DFT calculation.  The new weights for the 

remaining samples are derived by simply shifting each data sample counterclockwise to the next 

weight in the bin which would be a  
2

n
N


radian shift (n is the bin number).  Since all the data 

samples for a specified bin frequency are shifted by the same amount, the product of each sample 

times its new weight equals the old product times the rotation factor, 
n

N
j

e

2

, for Bin n.   

 

So, at this point, we have 

Bin n:       NEXT DFT = 
n

N
j

e

2

[PREVIOUS DFT – oldest data sample] + ? 

 

The only thing not accounted for at this point is inserting the newest data sample multiplied by 

its corresponding weight.  Looking at Figure 8.6, the weight corresponding to the newest data 

sample just happens to be equivalent to the rotation factor.  So, we now have the following: 

 

NEXT DFT = 
n

N
j

e

2

[PREVIOUS DFT – oldest data sample] + 
n

N
j

e

2

[newest data sample] 

 

 

which simplifies to 

NEXT DFT = 
n

N
j

e

2

[PREVIOUS DFT – oldest data sample + newest data sample] 

 

 

In more conventional math notation, the algorithm for a sliding DFT is 

 

SLIDING DFT

 

 

Xnfo
 (L) = ej2πn N⁄  [Xnfo

 (L − 1) − x(L − N) + x(L)]                 n = 0, 1, … N − 1 

              (8.4) 
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The algorithm must be initialized in order to implement the sliding DFT.  There are two options 

for initializing the algorithm.  One option is to collect the first N input data values then calculate 

an N-PT DFT that would be used as the initializing DFT in the difference equation above.  

Another option is to simply start at t = 0 by loading the input data buffer with all zeros (except 

the current input x(0)) and initializing )1( LX
onf to zero.  In this case, it is important to 

recognize that the difference equation would not produce valid DFT information until the Nth 

iteration through the difference equation.  Both options require the exact same time delay of NTs 

before the first valid DFT can be computed.  The second option is a lot easier to program 

because it simply requires implementation of the difference equation and does not include the 

additional computational burden of the one-time N-PT DFT calculation. 

 

A block diagram realization of the sliding DFT is shown in Figure 8.7. 

 

 

 
Figure 8.7:  Block Diagram Realization of Sliding DFT 

 

The first part of the block diagram in Figure 8.7 is simply a comb filter.  The second part of the 

block diagram involves feedback of the previous output.  The transfer function for the Sliding 

DFT is given by: 
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                               (8.5)

 

 

Challenge Question 8.4 

What are the poles associated with the Sliding DFT algorithm?  What does this indicate about the 

stability of the algorithm? 

 

Modified Sliding DFT 

As indicated in the challenge question, the Sliding DFT algorithm is marginally stable and may 

become unstable due to rounding of the coefficient, exp(j2n/N).  If stability is a problem, the 

sliding DFT algorithm can be modified to guarantee stability.  The modified algorithm for a 

sliding DFT is given by: 

 

x(L1)  



+ 



+ 
x(L) 

 

Σ Σ  
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Modified Sliding DFT (to guarantee stability) 

 

Xnfo
 (L) = r ∙ ej

2π
N

n [Xnfo
 (L − 1) − rNx(L − N) + x(L)]            n = 0, 1, … N − 1 

 

0 < r < 1 

(8.6) 

 

Notice that in the modified algorithm, the numerical coefficient which posed a potential stability 

problem has been scaled by a real number r < 1.  This will guarantee stability of the algorithm as 

long as the magnitude of 1

2


n

N
j

re



.  How does the scale factor, r, affect the DFT calculation?  

The modified sliding DFT algorithm will actually calculate the following:  
 

10)()(
1

0

/2  




 NnerkxnfX
N

k

NnkjkN
oDFT 

              (8.7)

 

 

Notice that the only difference between this modified DFT and the original DFT is the powers of 

r that have been inserted into the summation.  These powers of r could be interpreted either as 

scaling factors that pull the bin weights inside the unit circle or as a non-symmetric unusual type 

of window on the input data samples as shown in Figure 8.8 for an 8-pt DFT.  Notice that 

choosing r very close to one minimizes the scaling effect on the input data samples; that is,  

rN−k ≈ 1 so long as r is very close to 1.     

 

 
Figure 8.8:  Effect of Scale Factor, r for 8-pt DFT 
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In summary, the scale factor r should be chosen as close to 1 as possible while still ensuring that 

the magnitude of rej(2π/N)n  is less than 1 when implemented on the DSP processor.  This will 

guarantee stability of the algorithm while minimizing the effect of scaling on the accuracy of the 

DFT results.  A block diagram for the modified sliding DFT is shown in Figure 8.9. 

 

 

 
Figure 8.9:   Block Diagram Realization of Modified Sliding DFT 

 

 

 

Example 8.5:  Tone Detection using Sliding DFT    

 

The input signal for this sliding DFT example was generated by playing and recording a series of 

notes on a digital piano (see Figure 8.10(a)).  The Midi recording was then converted to a wav 

file which was imported into MATLAB using the audioread function.  A wav file uses a 

sampling rate of 44,100 Hz which is higher than necessary for this example so the data was 

decimated by a factor of 10 to reduce the sampling rate to 4410 Hz.  A plot of the decimated wav 

file is shown in Figure 8.10(b).  An FFT of the decimated wav file was computed using 

MATLAB and is plotted in Figure 8.10(c).  The frequencies for the notes played are:  Middle C 

= 261.63 Hz, E  = 329.63 Hz, G = 392 Hz, and C one octave above Middle C = 523.25 Hz.  

Notice that the FFT in Figure 8.10(c) shows resonant peaks at the discrete frequency bins closest 

to these note frequencies.   

 

 

 
Figure 8.10a:   Series of Notes Played (Middle C, E, G, C, G, E, Middle C) 

 

 

x(L1)  



+ 



+ 
x(L) 

 

Σ Σ  
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Figure 8.10b:  Plot of wav file Data 

 

 
Figure 8.10c:  FFT of the Decimated wav file 

 

Figure 8.10:  Example 8.5 
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The MATLAB commands used to generate the plots in Figure 8.10b and 8.10c are listed in 

Figure 8.11. 

 

% Example 8.5 

[y,Fs] = audioread('notes.wav'); 

% Decimate the signal by 10 giving a new sampling rate of 4410 

% Just include first channel of stereo signal 

ydec=decimate(y(:,1),10); 

tdec = 0:1/4410:(size(ydec)-1)*1/4410; 

plot(tdec,ydec); 

  

fs=Fs/10;                                     

yf=fftshift(fft(ydec));       

N=length(yf); % N= # of time samples = # of freq. comp in fft 

fo=fs/N;      % Calculate resolution of fft in Hz  

f=-floor(N/2)*fo:fo:(ceil(N/2)-1)*fo; % Set up DFT Frequencies 

 

%Plot the magnitude response of fft 

figure; 

plot(f,abs(yf)); 

title('FFT of notes.wav file') 

xlabel('Frequency (Hz)');xlim([0 600]) 

 

Figure 8.11:  MATLAB Code for Figure 8.10 (b) and (c) 

 

Although the spectral plot in Figure 8.10c does indeed accurately reflect the notes that were 

played, it gives no indication of when each note was played or the duration of each note.  For the 

next part of this example, a 256 pt-sliding DFT will be implemented to show how the signal 

spectrum varies over time.  The resolution for the 256-pt DFT is 

 

Hz
N

F
f s
o 2265625.17

256

4410
  

 

The sliding DFT could easily be calculated for all 256 bin frequencies but in this example it will 

only be calculated for the bin frequencies closest to the notes played.  The bin numbers for each 

note are shown in Table 8.3. 

 

Table 8.3:  Bin Numbers for Notes Played  

NOTE FREQUENCY FREQUENCY/ of  BIN # 

Middle C 261.63 15.2 15 

E 329.63 19.1 19 

G 392 22.76 23 

C octave above Middle C 523.25 30.4 30 
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The results are plotted in Figure 8.12.  Each of the sliding DFTs correlates very well with the 

original wav file.  It is possible to examine each of the sliding DFTs in Figure 8.12 and 

determine when each of the individual notes was played.   The bottom graph for the C one octave 

above Middle C does require comment.  It appears that this note was played in conjunction with 

Middle C at t =  0.6 sec and t = 1.8 sec.  This is actually due to how the digital piano works.  The 

digital piano provides several options for special effects; one of which is that when a note is 

played, harmonics are also produced.  The C above Middle C is the 2nd harmonic of Middle C 

and will be generated every time Middle C is played (with smaller amplitude). 

 

 

 
Figure 8.12:  Sliding DFT Results (Example 8.5) 

.   
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[y,Fs] = audioread('notes.wav'); 

ydec=decimate(y(:,1),10); % Decimate Channel 1 of input wav file by 10 

tdec = 0:1/4410:(size(ydec)-1)*1/4410; 

subplot(3,1,1);plot(tdec,ydec); 

title('Wavefile of Notes');xlabel('Time (sec)') 

 

% Sliding DFT 

N = 256;  % Size of DFT 

x = [zeros(1,N) ydec' ]; % Initialize input data vector with N zeros 

 

% Middle C = Bin 15 

n = 15; X_15(1)=0; % Set Bin # and Initialize first DFT to zero 

for m = 1:length(x)-N-1, 

    X_15(m+1)=exp((1i*2*pi/N)*n)*[X_15(m)-x(m)+x(m+256)]; 

end 

subplot(3,1,2); plot(tdec,abs(X_15)); 

title('Sliding DFT for Middle C');xlabel('Time (sec)') 

 

% Note E above Middle C = Bin 19 

n = 19; X_19(1)=0; 

for m = 1:length(x)-N-1, 

    X_19(m+1)=exp((1i*2*pi/N)*n)*[X_19(m)-x(m)+x(m+256)]; 

end 

subplot(3,1,3); plot(tdec,abs(X_19)); 

title('Sliding DFT for Note E');xlabel('Time (sec)') 

 

% Note G above Middle C = Bin 23 

n = 23; X_23(1)=0; 

for m = 1:length(x)-N-1, 

    X_23(m+1)=exp((1i*2*pi/N)*n)*[X_23(m)-x(m)+x(m+256)]; 

end 

figure; subplot(2,1,1); plot(tdec,abs(X_23)); 

title('Sliding DFT for Note G');xlabel('Time (sec)') 

 

% C above Middle C = Bin 30 

n=30; X_30(1)=0; 

for m = 1:length(x)-N-1, 

    X_30(m+1)=exp((1i*2*pi/N)*n)*[X_30(m)-x(m)+x(m+256)]; 

end 

subplot(2,1,2); plot(tdec,abs(X_30)); 

title('Sliding DFT for Note C above Middle C');xlabel('Time (sec)')  

 

% Show all 4 sliding DFTs in a single plot 

figure; subplot(2,1,1); plot(tdec,ydec);  

title('Input Data: Wavefile of Notes');xlabel('Time (sec)') 

subplot(2,1,2); 

plot(tdec,abs(X_15),tdec,abs(X_19),tdec,abs(X_23),tdec,abs(X_30));  

title('Sliding DFTs for all Four Bins');xlabel('Time (sec)') 

legend('Middle C','E','G','C octave above Middle C') 

Figure 8.13:  MATLAB Code for Sliding DFT (Example 8.5) 
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Figure 8.14 shows all four sliding DFTs in a single plot. 

 

 
Figure 8.14: Combined Sliding DFT Results (Example 8.5) 

 

 

Effect of Time Duration, D 

In the previous section on real-time spectral analysis using block processing and FFTs, it was 

mentioned that the choice of time duration, D, was critical.  Choosing a time duration too long 

could result in missing short burst changes in the input signal (poor time resolution), but 

decreasing the time duration reduces the frequency resolution.  This issue was illustrated in 

Example 8.3.  The same issue occurs with a sliding DFT.  Even though the spectrum is updated 

at every sampling instant, the spectrum is still based on N samples of the input signal spanning a 

time duration of D = N∙Fs.  

 

Wavelets are an alternative to FFTs or sliding DFTs for real-time spectral analysis.  Wavelets 

attempt to bridge the tradeoff between poor time resolution with large D and poor frequency 

resolution with small D by offering good time resolution at higher frequencies and good 

frequency resolution at lower frequencies.  The underlying assumption on the input signal is that 

the lower frequencies persist for longer intervals of time (so D can be longer); whereas, the 

higher frequencies tend to occur in shorts bursts (so D must be shorter).   
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Wavelet processing essentially breaks the input signal into distinct frequency bands through a 

series of digital filters and provides good frequency resolution in the lower bands and good time 

resolution in the higher bands of the signal.  A detailed analysis of wavelet processing is beyond 

the scope of this text, but it is a fascinating subject and there are many good texts and websites 

available to the interested reader.   

 

Sliding DFT with Windowing 

In section 7.2, the importance of windowing blocks of data to enhance spectral analysis by 

reducing the effect of leakage was discussed.  With the Sliding DFT, windowing the incoming 

data samples directly (in the time domain) is not an option. 

 

 

Challenge Question 8.5 

Why is it not possible to window the incoming data samples directly for a sliding DFT? 

 

 

Although it is not possible to window the incoming input data samples in the time domain, it is 

possible to produce the same effect by performing a convolution in the frequency domain.    

Recall the following useful property first introduced in Chapter 4: 

 
)(*)()()( fWfXtwtx                                                  (8.8) 

 

Multiplication of two signals in the time domain is equivalent to convolving the spectrums of the 

two signals.  One of the common window functions introduced in Chapters 5 and 7 is the 

Hamming window described by 
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cos46.054.0)( 
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                         (8.9)

 

 

This window function has a very simple Fourier Transform given by: 

 

 
N

F
fffffffW s
ooo  where)()(23.0)(54.0)( 

           (8.10)
 

 

Assuming that the sliding DFT provides an accurate sampled approximation to the spectrum of 

the input data signal X(f) at the bin frequencies nfo, and applying the convolution property using 

W(f) for the Hamming window yields 

 

 ))1(())1((23.0)(54.0)( oooo
W fnXfnXnfXnfX 

                   (8.11)
 

 

In other words, 

 

Bin n Windowed = 0.54 [ Bin n] – 0.23 [ Bin (n1) + Bin (n+1) ]               (8.12) 
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Windowing is therefore accomplished by using the sliding DFT algorithm to compute the 

spectrum at the various bin frequencies, then combining adjacent bins to produce a spectrum for 

windowed data samples. 

 

Several other window functions were explored in Chapters 5 and 7.  Any window function that 

can be represented as a combination of cosine or sine functions could be used in place of the 

Hamming window. Table 8.4 provides some common window functions and the corresponding 

“windowed” DFT. 

 

Table 8.4:   DFT using Common Window Functions 

WINDOW  WINDOW FUNCTION WINDOWED DFT 

Hamming 
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Notice that the coefficients for the Hanning window can be used to advantage when 

implementing this window.  Multiplication by 0.5 can be accomplished by a single bit shift to the 

right and multiplication by 0.25 can be implemented by a 2 bit shift to the right. 

 

 

8.5  ADAPTIVE FILTERING 

 

Adaptive filtering is the process of changing the weights of a filter in real-time based on some 

type of input/output signal information.  Echo cancellation, room acoustic identification, and 

noise cancellation are examples of adaptive filtering applications.   

 

Echo Cancellation 

Echo cancellation is extremely useful in telecommunications. The two types of echo are hybrid 

echo and acoustic echo.   Hybrid echo occurs in a wire-line telephone network switch where the 

two-wire analog loop connection to the house is switched to a four-wire digital line for 

transmission. The echo is simply a result of an impedance mismatch in the two-wire to four-wire 

conversion circuitry.  Hybrid echo occurs when one or more speakers are utilizing a land line 

connection.  Acoustic echo results from unwanted feedback between a speaker and a microphone  

or from reflection of audio signals from surfaces back to the microphone.  Acoustic echo occurs 

in very small phones where the earpiece and microphone are not sufficiently isolated or in 

“hands-free” conversations.  Digital signal processors programmed as adaptive filters are used to 

cancel unwanted echo.     
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A block diagram for Hybrid echo cancellation is shown in Figure 8.15.  When Speaker #1 talks, 

the impedance mismatch at the hybrid causes an echo of his or her speech.  In the absence of 

echo cancellation, this echo would be combined with a voice signal (if present) from Speaker #2 

and would be transmitted back to Speaker #1.  The adaptive FIR filter in the hybrid produces an 

estimate of the echo and subtracts the estimate from the return signal effectively cancelling the 

echo.  The weights of the adaptive FIR filter are adjusted in real-time based on the incoming 

signal from Speaker #1 and the residual error for the echo estimate.  The filter weights are only 

adjusted when Speaker #1 is speaking and Speaker #2 is not in which case a residual error of 

zero would indicate a perfect estimate of the hybrid echo signal.  Typically a least mean squares 

(LMS) algorithm (or version of such) is used to adjust the filter weights to minimize the residual 

error.  The LMS algorithm is covered later in this section. 

 

 
 

Figure 8.15:  Echo Cancellation 

 

 

The hybrid echo signal is relatively easy to cancel because it is linear and stationary; that is, the 

echo signal is simply the original speech signal attenuated and time-delayed.  Acoustic echo is 

much more difficult to cancel because it is non-linear and non-stationary.  Methods for 

cancelling acoustic echo vary from vendor to vendor with varying degrees of success (or failure). 

 

 

Room Acoustic Identification 

Adaptive filters can also be used to identify the acoustics of an enclosed space such as a room, an 

auditorium, a concert hall or even a stairwell.  Acoustic identification is useful for new 

construction, for modifying existing spaces, and for reverb filter design. A basic block diagram 
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for room acoustic identification is shown in Figure 8.16.  An input signal, typically white or pink 

noise, is applied to an adaptive filter and to a loudspeaker in the room.  The signal, modified by 

the acoustical characteristics of the room, is picked up by the microphone.  This signal is 

compared to the output of the adaptive filter producing a difference or error signal.  The filter 

weights are adjusted based on the applied input signal and on the error signal in order to 

minimize the error signal.  If the error signal converges to zero, then the adaptive filter weights 

“match” the impulse of the room. 

 

 
Figure 8.16:  System Identification 

 

 

Noise Cancellation 

Adaptive filters can be used to suppress or cancel noise in a signal or in the surrounding 

environment.  Noise-cancelling headphones reduce the level of unwanted ambient noise from 

fans or engines or other background noise sources.  There are numerous biomedical applications 

for adaptive filtering. One of the earliest biomedical applications for noise cancellation was by 

Widrow et. al to eliminate the 50 Hz “hum” from an ECG (electrocardiograph) heart signal.  

Widrow also utilized adaptive filtering to eliminate the mother’s heartbeat signal from a fetal 

monitor signal in order to produce the heartbeat of the fetus only.   

 

A block diagram for adaptive noise cancellation is shown in Figure 8.17.  The reference noise 

signal is applied to an adaptive filter to produce an “anti-noise” signal that is then subtracted 

from the noisy signal to reduce the noise level in the signal.  In the case of noise-cancelling 

headphones, the reference noise signal is the background noise picked up by a microphone.  For 

the fetal heartbeat application, the reference noise signal is the mother’s heartbeat signal picked 

up by a second monitor. 
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Figure 8.17:  Noise Cancellation 

 

 

Least Mean Squares Algorithm 

One algorithm for adjusting the weights of an adaptive filter is the least mean squares (LMS) 

algorithm.  The block diagram in Figure 8.18 is used to define the symbols used in the algorithm 

for the various signals. 

 

 
Figure 8.18:  Adaptive FIR Filter 

 

 

The weights (or filter coefficients) of the adaptive FIR filter are adjusted to minimize the error, 

e(k), according to some constraint.  The error signal is simply the difference between the output 

of the adaptive filter and the desired output.  Using w0, w1, … wN – 1 to designate the filter 

weights, the output of the adaptive filter is  

 

𝑦(𝑘) = 𝑤0(𝑘)𝑥(𝑘) + 𝑤1(𝑘)𝑥(𝑘 − 1) +  … 𝑤𝑁−1(𝑘)𝑥(𝑘 − (𝑁 − 1)). 
 

The LMS algorithm minimizes the expected value of the square of the error signal; that is the 

power of the error signal, and results in the following update for the filter coefficients: 
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LMS Algorithm 

 

𝑤𝑖(𝑘 + 1) = 𝑤𝑖(𝑘) + 𝜇𝑒(𝑘) ∙ 𝑥(𝑘 − 𝑖)   𝑓𝑜𝑟  𝑖 = 0 …  𝑁 − 1 
 

   e(k) = d(k) – y(k) = estimation error 

   μ:  adaptation step size 

   N:  order of FIR filter  

   𝑤𝑖(𝑘):  ith filter coefficient at time kTs                            (8.13) 

 

The adaptation step size, μ, affects how much the filter weights will be changed at each iteration 

of the algorithm and therefore affects the rate of convergence of the algorithm.  Choosing a 

larger value for μ could result in faster convergence (adaptivity) but could also cause less 

accurate filter weights, larger estimation error, and affect the stability of the algorithm.  The 

adaptation step size is sensitive to the characteristics of the input signal which means there is no 

“one size fits all” value for μ.  The normalized LMS algorithm reduces input signal sensitivity by 

normalizing the weight adjustment term by the input signal power as shown in Equation 8.14: 

 

Normalized LMS Algorithm 

 

𝑤𝑖(𝑘 + 1) = 𝑤𝑖(𝑘) + 𝜇𝑒(𝑘) ∙
𝑥(𝑘−𝑖) 

∑ 𝑥2(𝑘−𝑖)𝑁−1
𝑖=0

        𝑓𝑜𝑟  𝑖 = 0 …  𝑁 − 1            (8.14) 

 

 

Recall in the previous section, it was noted that the Sliding DFT algorithm was marginally stable 

(poles on unit circle) and a scale factor was introduced to stabilize the algorithm.  The LMS 

algorithms are also marginally stable with a discrete pole at 1.   A leakage factor can be added to 

stabilize the algorithm: 

 

 

Normalized LMS Algorithm with Leakage Factor 

 

𝑤𝑖(𝑘 + 1) = (1 − 𝜇𝛼)𝑤𝑖(𝑘) + 𝜇𝑒(𝑘) ∙
𝑥(𝑘 − 𝑖) 

∑ 𝑥2(𝑘 − 𝑖)𝑁−1
𝑖=0

        𝑓𝑜𝑟  𝑖 = 0 …  𝑁 − 1 

 

0 < (1 − 𝜇𝛼) < 1                                                  (8.15) 

 

 

There are several other algorithms available for adjusting the weights of adaptive filters 

including recursive least squares (RLS) and Kalman filters.  Detailed discussion and derivation 

of adaptive filters is beyond the scope of this text.  Many of these algorithms are available in 

MATLAB.  The lab exercise at the end of this chapter introduces the adaptive filter blocks in 

Simulink.  
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Answers to Chapter 8 Challenge Questions 

 
Question 8.1 Close examination of the plot in Figure 8.4(a) reveals a very small peak at 300 Hz 

prior to the much larger peak and a very small peak at 100 Hz in between the two much larger 

peaks.  Why does this occur? 

 

The input samples are fed into a buffer of length 256 and an FFT is computed.  The buffer is then 

filled with 256 new input samples and a new FFT is computed.  This process continues over the 

entire duration of the input signal.  The signal in this example begins as a 100 Hz tone then 

switches to a 300 Hz tone.  There are certain windows of time where the buffer of data contains 

some samples of the 100 Hz tone and some samples of the 300 Hz tone.  The small peak at 300 

Hz prior to the larger peak indicates that the buffer was filled mostly with samples of the 100 Hz 

tone but had a few samples of the 300 Hz tone.  The small peak at 100 Hz between the two larger 

peaks at 100 Hz is indicative of a sampling time window that produced a buffer mostly filled 

with samples at 300 Hz with a few samples at 100 Hz.  This concept is explored in more detail in 

Example 8.4. 

 

Question 8.2 Example 8.4 shows that increasing the overlap of input sample values for spectral 

analysis results in a better reflection of how the signal spectrum varies over time.  What is the 

disadvantage of increasing the overlap? 

 

Increasing the overlap results in an increase in computational complexity by creating more 

sampling intervals and shortening the amount of time to compute each FFT.  In Example 8.4, an 

overlap of 128 (for a 256-PT FFT) doubled the number of sampling windows and cut the time in 

half for computing each new FFT.  Instead of waiting for 256 new input samples before 

computing the next FFT, the FFT is computed based on 128 new input samples and 128 past 

sample values.  Increasing the overlap to 192 in Example 8.4 resulted in four times as many 

FFTs computed in ¼ the amount of time compared to no overlap. 

 

Question 8.3 For a 16-pt DFT, assume the sixteen consecutive data samples are numbered 0, 1, 

2, … 15.  Sketch a diagram similar to the one in Figure 8.6 that shows how the data samples are 

distributed among the sixteen weights for Bin 5.  

 

First distribute 16 weights evenly spaced around a unit circle.  The oldest sample, 0, has a weight 

of one.  For the remaining samples, start at one and move clockwise to every 5th sample since we 

are working with Bin 5.  Wrapping around the circle as necessary to use all 16 data samples 

results in the diagram on the following page. 
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Question 8.4 What are the poles associated with the Sliding DFT algorithm?  What does this 

indicate about the stability of the algorithm? 

 

As discussed in Chapter 4, the poles are the roots of the denominator of the transfer function.  

There are N1 poles at the origin, but there is one pole at
n

N
j

e

2

.  This pole lies on the unit circle 

which means the algorithm is only marginally stable.  The system has N zeros evenly distributed 

about the unit circle, and one of these theoretically cancels the marginally stable pole.  However, 

coefficient rounding of the term 
n

N
j

e

2

 could cause the pole to migrate outside the unit circle 

which would cause instability of the algorithm. 

 

 

Question 8.5 Why is it not possible to window the incoming data samples directly for a sliding 

DFT? 

 

In a sliding DFT, we lose access to the individual data samples.  The sliding DFT depends on the 

previous DFT calculation, the newest input value, and the oldest output value.  In order to use 

windowing, the window values for each of the samples would have to be re-adjusted at each new 

time interval.  This adjustment at each time interval was possible for the DFT weights because 

every data sample experienced the exact same change in weight (a simple rotation around the 

unit circle).  Unfortunately, the data samples don’t experience any type of uniform or consistent 

change when shifting through a window function. 
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Chapter 8 Problems 

 
Problem 8.1  For an 8-pt DFT, draw a diagram showing all the weights for Bin 6 and the 

corresponding data samples assuming the data samples are numbered 0, 1, … 7 with 0 being the 

oldest sample. 

 

Problem 8.2:  Compute the convolution y = conv(x,h) using the overlap add method.  Do the all 

the calculations by hand.  Check your answer using MATLAB. 

 

  x = [ 1  1  3  2  4  2  1]             

  h = [1  2  3] 

 
Problem 8.3:  Compute the convolution y = conv(x,h) using the overlap save method.  Do the all 

the calculations by hand.  Check your answer using MATLAB. 

 

  x = [ 1  1  3 2  4  2  1]             

  h = [1  2  3] 

 
Problem 8.4: 

(a) Write an m-file to implement the overlap add algorithm.  Inputs to the function should be 

the filter coefficients, h, and the input x.  Output of the function should be the filter 

output, y. 

(b) Verify that the m-file works by doing the following: 

 Design an FIR filter using the Filter Design and Analysis Tool 

 Define some sinusoidal input in the passband of your filter. 

 Pass the input and filter coefficients to your overlap add m-file and plot the results. 

 Compute y = conv(x,h) and plot the results.  The two plots should match. 

 

Problem 8.5: 

(c) Write an m-file to implement the overlap save algorithm.  Inputs to the function should 

be the filter coefficients, h, and the input x.  Output of the function should be the filter 

output, y. 

(d) Verify that the m-file works by doing the following: 

 Design an FIR filter using the Filter Design and Analysis Tool 

 Define some sinusoidal input in the passband of your filter. 

 Pass the input and filter coefficients to your overlap add m-file and plot the results. 

 Compute y = conv(x,h) and plot the results.  The two plots should match. 

 
Problem 8.6:  Refer to Example 8.3   Suppose the input signal is 

 

𝑥(𝑡) = { 

sin(2𝜋(1250)𝑡)             
sin(2𝜋(725)𝑡)             

sin(2𝜋(400)𝑡) + sin (2𝜋(550)𝑡)             

0 𝑚𝑠 ≤ 𝑡 < 24 𝑚𝑠
24 𝑚𝑠 ≤ 𝑡 < 42 𝑚𝑠
42 𝑚𝑠 ≤ 𝑡 ≤ 60 𝑚𝑠

 

 

and the input signal is sampled at Fs = 8000 Hz. 
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(a) Create the input signal in the MATLAB. 

(b) Build the Simulink model shown in Figure 8.3 for block processing an FFT.  Set the FFT 

length to 256 with no overlap and set the window length to 256.  Run the model then plot 

the 3-D FFT similar to Figure 8.5.  Does the FFT reflect the true spectrum of the input 

signal?  Explain. 

(c) Repeat part b for an FFT and window length of 128.  How does the decrease in buffer 

size affect the spectrum? 

(d) Repeat part c for an FFT and window length of 64. 

 

 

Problem 8.7:  Refer to Example 8.4.  Suppose the input signal is 

 

𝑥(𝑡) = { 

sin(2𝜋(1250)𝑡)             
sin(2𝜋(725)𝑡)             

sin(2𝜋(400)𝑡) + sin (2𝜋(550)𝑡)             

0 𝑚𝑠 ≤ 𝑡 < 24 𝑚𝑠
24 𝑚𝑠 ≤ 𝑡 < 42 𝑚𝑠
42 𝑚𝑠 ≤ 𝑡 ≤ 60 𝑚𝑠

 

 

and the input signal is sampled at Fs = 8000 Hz. 

 

(a) Create the input signal in the MATLAB. 

(b) Make a table similar to Table 8.1 and 8.2 that show the time intervals for a 128-pt FFT 

with no overlap, a 128-pt FFT with an overlap of 32, and a 128-pt FFT with an overlap of 

64. 

(c) Build the Simulink model shown in Figure 8.3 for block processing an FFT.  Set the FFT 

length to 128 with no overlap and set the window length to 128.  Run the model then plot 

the 3-D FFT similar to Figure 8.5.  Does the FFT reflect the true spectrum of the input 

signal?  Explain.  (Note: this is part c of Problem 8.6) 

(d) Repeat part c using an overlap of 32 for the FFT.   How does the overlap affect the 

spectrum?  Why? 

(e) Repeat part c using an overlap of 64 for the FFT.   How does the overlap affect the 

spectrum?  Why? 

 

Problem 8.8:  Refer to Example 8.5.  Suppose the input signal is 

 

𝑥(𝑡) = { 

sin(2𝜋(349)𝑡)             
sin(2𝜋(440)𝑡)             

sin(2𝜋(349)𝑡) + sin (2𝜋(523)𝑡)             

0 𝑠 ≤ 𝑡 < 0.25
0.25 𝑠 ≤ 𝑡 < 0.5 𝑠
0.5 𝑠 ≤ 𝑡 ≤ 1.0 𝑠

 

 

and the input signal is sampled at Fs = 8000 Hz. 

 

(a) Assuming a 256-pt DFT, calculate the discrete bin frequencies (and bin numbers) closest 

to the frequencies in the input signal. 

(b) Perform a sliding DFT on the input signal but only calculate the DFT at the bin 

frequencies determined in part a.  Plot the results for each of the bin frequencies. 

(c) Repeat part b with a windowed sliding DFT using one of the windows from Table 8.4.  

Compare the results with part b. 
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CHAPTER 8   LAB EXERCISE  
Adaptive FIR Filters 

 
Objectives 
 

1. To experiment with adaptive FIR filters for system identification using Simulink. 

2. To explore the effectiveness of adaptive FIR filters for noise cancellation. 

 

Procedure 

 
A.  System Identification using a Normalized LMS Adaptive Filter 

 
1. Build the Simulink system shown in Figure 1.   

 
Figure 1:  Simulink Model for System Identification 

 

2. Set up the block parameters for the LMS filter block and the Digital Filter Design as 

shown in Figure 2. 

 

3. Set the sample time for the band-limited white noise equal to 1/8000. 

 

4. Set up the parameters for the Waterfall Scope as shown in Figure 3. 

 

5. For the Multiport Selector, leave the selection as Rows and set the index to {1}.  This 

will cause row 1 of the weights vector to be displayed on the time scope. 

 

6. Set the stop time for the simulation to 0.1 seconds. 
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Figure 2:  Block Parameters for Digital Filter and LMS Filter 

 

 
Figure 3: Block Parameters for Waterfall Scope 

 
 

7. Run the simulation with the Waterfall Scope and each of the time scopes open.   

 

Comments: 

The error time scope should display an error that starts out relatively high but is very 

close to zero by the end of the simulation (0.1 seconds).  The time scope for the weights 

simply shows how the first weight changes over time (all weights begin at zero initially).  

You could view any of the other weights by simply clicking on the Multiport Selector and 

choosing a different row.  The Waterfall scope shows how all 32 weights (samples) 

change over time.  Only the last six values (six traces) for each weight is shown.  The 

final values for all 32 weights are available in the MATLAB workspace in a vector called 

ExportData. 
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8.  Now experiment with the slider gain to change the step size of the adaptation for the 

filter weights.  Comment on the effect of the slider gain.  What happens when the 

adaptation step goes up to 2? 

 

 

 

 

 

 

 

 

 

 

9. Set the slider gain to 0.5.  Experiment with the filter length in the LMS filter block.  The 

“Unknown System” is 12th order which means it has 13 numerator coefficients.  Answer 

the following questions: 

 

What happens if the filter length in the LMS filter block is shorter than the “unknown” 

system filter length? 

 

 

 

 

 

 

What happens if the filter length in the LMS filter block is exactly equal to the number of 

“unknown” filter coefficients?  To really answer this question, you will need to look at 

the variable ExportData in the MATLAB workspace after running the simulation.  

Compare the LMS filter weights to the filter coefficients in the FDAT block. 

 

 

 

 

 

 

 

What happens if the filter length in the LMS filter block exceeds the “unknown” system 

filter length? 
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Since the system in practice is unknown, the order of the system will presumably also be 

unknown.  What are the advantages and disadvantages of simply setting the LMS 

adaptive filter length really high? 

 

 

 

 

 

 

 

 

 

10.  Design a different type of “unknown” system.  Choose a low-pass IIR Butterworth filter 

(minimum order) with a sampling frequency of 8000 Hz, pass-band 1000 Hz, stop band 

2000 Hz with 40 dB of attenuation in the stop band.  Can you get the LMS FIR filter to 

properly model the IIR “unknown” filter?  How many LMS filter coefficients were 

needed? 

 

 

 

 

 

 

 

 

 

 

11. Try a different filter type (FIR band-pass or notch) for the “unknown” system.  

Experiment with the adaptation step size and the LMS filter length.  Comment on 

observations. 
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B.  Noise Cancellation Using Adaptive Filtering 

 

1.  Build the system in Simulink shown in Figure 4. 

 

2. Set the stop time in the model block to 90 (seconds). 

 

3. In the Random Source block, set the Source Type to Uniform, the Maximum to 0.25, and 

the sample time to 1/44100. 

 

4. In the From Multimedia File block, set the file name to songmono.wav, click the loop 

box, and set the number of times to repeat to 1. 

 

5. Locate the wav file (songmono.wav) on the text website and add it to your current 

directory.  Or, create your own songmono.wav file by saving one of your own wav files 

to the current directory then converting it to mono as follows: 

 
[y,Fs] = audioread(‘nameofyourfile.ext’); 

ymono = y(:,1); % read the first channel of the stereo file 

audiowrite('songmono.wav',ymono,Fs); 

 

 

 
Figure 4:  Noise Cancellation Model 
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6. On the Slider Gain Control for the switch, set the minimum to 1 and the maximum to 3.  

Setting this gain to 1 will cause the wav file to play.  Setting the gain anywhere between 

2 and 3 will cause the wav file with the noise added in to play.  A gain of 3 will play the 

output of the LMS filter; that is the “noise reduced” wav file.  Start with a slider gain of 3 

(output of LMS filter). 

 

7. The Slider Gain for the Adaptation Step Size should be set to a minimum of 0 and a 

maximum of 2.  This slider will allow the user to adjust the adaptation step size while the 

simulation is running. 

 

8. The manual switch allows the user to reset the LMS filter while the simulation is running. 

 

9. For the LMS filter, set the algorithm to normalized LMS and the filter length to 32. 

 

10. Run the simulation, listening to “noise reduced” or filtered signal (slider gain control 

switch on 3, the noisy wav file (slider gain control switch on 2 - the noise will really 

dominate here), and the original non-noisy signal (slider gain control switch on 1). 

 

Note: when you first start the simulation, the noise-reduced signal sounds noisy because 

the LMS filter is still modeling the noise but you should notice that noise dies off within 5 

or 6 seconds . 

 

11. Experiment with the adaptation step size.   

 

Does an increase in adaptation step size help or hurt in the noise reduction?   

 

 

 

 

What happens if the adaptation step size is made very small? 

 

 

 

 

How do these results compare to the effect of adaptation step size for system 

identification as explored in Part A? 

 

 

 

 

12.  Experiment with the size of the Normalized LMS filter and comment on the results. 
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